• Title/Summary/Keyword: Electrochemical experiment

Search Result 233, Processing Time 0.025 seconds

The Experiment on the effect of variations of voltage frequency and duty r on the electrochemical discharge machining of Pyrex glass (전압 주파수와 파형 폭 변화에 따른 유리의 미세 전해 방전 가공 성능에 대한 실험)

  • Lee, Jung-Yong;Ahn, Yoo-Min;Ahn, Si-Hong;Park, Chi-Hyun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3307-3309
    • /
    • 1999
  • Electrochemical discharge machining (ECDM) is a very recent technique in the fabrication of the micro-electro-mechanical system ( MEMS ) devices. This paper presents the experimental results of the machining of micro-holes on pyrex glass substrates by use of ECDM. Electrolyte is used with a KOH aqueous solution, cathode with copper, anode with platinum, and tool feed system is applied with gravity feed system. Already established experimental results were taken under the condition of constant voltage frequency. However in this paper, the effect of variation of the voltage frequency and duty ratio is considered. In this experiment, it is measured the ECDM performances with variation of the voltage frequency and duty ratio under the conditions of constant other machining variables. ECDM performances are described by the hole depth, and the top hole diameter.

  • PDF

Effect of Cavitation Amplitude on the Electrochemical Behavior of Super Austenitic Stainless Steels in Seawater Environment (해수 환경에서 슈퍼 오스테나이트 스테인리스강의 전기화학적 거동에 미치는 캐비테이션 진폭의 영향)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • The cavitation and potentiodynamic polarization experiments were conducted simultaneously to investigate the effect of cavitation amplitude on the super austenitic stainless steel (UNS N08367) electrochemical behavior in seawater. The results of the potentiodynamic polarization experiment under cavitation condition showed that the corrosion current density increased with cavitation amplitude increase. Above oxygen evolution potential, the current density in a static condition was the largest because the anodic dissolution reaction by intergranular corrosion was promoted. In the static condition, intergranular corrosion was mainly observed. However, damage caused by erosion was observed in the cavitation environment. The micro-jet generated by cavity collapse destroyed the corrosion product and promoted the repassivation. So, weight loss occurred the most in static conditions. After the experiment, wave patterns were formed on the surface due to the compressive residual stress caused by the impact pressure of the cavity. Surface hardness was improved by the water cavitation peening effect, and the hardness value was the highest at 30 ㎛ amplitude. UNS N08367 with excellent mechanical performance due to its high hardness showed that cavitation inhibited corrosion damage.

Electrochemical Reduction of Carbon Dioxide Using a Proton Exchange Membrane (양이온 교환막을 이용한 이산화탄소의 전기화학적 환원)

  • Kim, Hak-Yoon;Ahn, Sang Hyun;Hwang, Seung Jun;Yoo, Sung Jong;Han, Jonghee;Kim, Jihyun;Kim, Soo-Kil;Jang, Jong Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.216-221
    • /
    • 2012
  • Electrochemical reduction of carbon dioxide has been widely studied by many scientists and researchers. Recently, the production of formic acid, which is expensive but highly useful liquid material, is receiving a great attention. However, difficulties in the electrochemical reduction process and analyzing methods impede the researches. Therefore, it is important to design an adequate system, develop the reduction process and establish the analyzing methods for carbon dioxide reduction to formic acid. In this study, the production of formic acid through electrochemical reduction of carbon dioxide was performed and concentration of the product has been analyzed. Large scale batch cell with proton exchange membrane was used in the experiment. The electrochemical experiment has been performed using a series of metal catalysts. Linear sweep voltammetry (LSV) and chronoamperometry were performed for carbon dioxide reduction and electrochemical analysis using silver chloride and platinum electrode as a reference electrode and counter electrode, respectively. The concentration of formic acid generated from the reduction was monitored using high performance liquid chromatography (HPLC). The results validate the appropriateness and effectiveness of the designed system and analyzing tool.

Study on Electrochemical Characteristics and Fabrication of Catalytic Electrode (복합 촉매 전극의 제조 및 전기화학적 특성에 관한 연구)

  • 민병승;정원섭;김광호;민병철;이미혜
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.401-407
    • /
    • 2002
  • Most of organic compounds discharged from industrial wastewater are treated by chemical oxidation, adsorption and biodegradable process. This process has been demanded a new advanced environmental wastewater treatment process. From this point of view, an electrochemical oxidation process using electrocatalysts has been developed for the destruction of organic compounds. Through this study, a ruthenium oxide/iridium oxide supported on titanium expanded metal was fabricated by thermal decomposition method and its performance was excellent during this experiment.

Tungsten With Tip Sharpening by Electrochemical Etching (전기화학적 에칭법에 의한 텅스텐 와이어의 Sharp tip 제조에 관한 연구)

  • 우선기;이홍로
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.45-53
    • /
    • 1998
  • Sharp tips are commonly used for applications in fields as diverse as nanolithography, lowvoltage field emitters, emitters, nanoelectroniecs, electrochemisty, cell biology, field-ion and electron microscopy. tungsten wire, mater만 used in this experiment, which test the chip of wafer has been used to the needle of probe card. Tungsten wire was sharpened by electrochemical etching methode to get a typical tip shape.

  • PDF

Effects of shot peening stand-off distance on electrochemical properties for surface modification of ALBC3 alloy (ALBC3 합금의 표면 개질을 위한 쇼트피닝 분사거리가 전기화학적 특성에 미치는 영향)

  • Han, Min-Su;Hyun, Koang-Yong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.233-238
    • /
    • 2013
  • In the case of casting materials or ductile materials for marine equipment, it is common to employ a surface modification for achieving cost reduction and improvement in strength. In particular, aluminium bronze ALBC3 exhibits excellent corrosion resistance, and thus widely used for marine application. However, application of the material under high-velocity seawater flow may induce electrochemical corrosion damage and physical damage such as cavitation erosion, leading to shorter service life of equipment. In this study, surface modification was carried out on ALBC3 alloy for different shot peening stand-off distances, and the physical hardness and electrochemical characteristics before and after modification were investigated. The results in each case showed the hardness increase in comparison with non-peened specimen, and the maximum hardness improvement(50 %) was found in 10 cm of shot-peening stand-off distance. It is observed that the electrochemical characteristics were irrelevant to application of shot peening.

Nitrogen Removal by Electrochemical Oxidation Using the Tube Type Electrode (튜브형 전극을 이용한 전기화학적 산화에 의한 질소제거에 관한 연구)

  • Cho, Jae-Jun;Jeong, Jong-Sik;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.580-587
    • /
    • 2004
  • The objective of this research is to investigate the electrochemical oxidation process for nitrogen removal in wastewater involving chloride ion and nitrogen compounds. The process experiment of electrochemical oxidation was conducted by using the stainless steel tube type reactor and the $Ti/IrO_2$ as anode. Free chlorine production and current efficiency variation for total nitrogen removal was compared depending on whether electrolyte is added, and the nitrogen type distribution under an operating condition. When chloride was added as electrolyte, it was found that production of free chlorine increased and the concentration of the chloride decreased as retention time passed. The concentration of chloride in influent decreased from 1,660 to 1,198 mg/L at the current density of $6.7A/dm^2$, while concentration of free chlorine increased to 132 mg/L. Current efficiency in removal of ammonium nitrogen was increased when chloride was dosed as electrolyte. It was observed that ammonium nitrogen was oxidized to nitrite and nitrate through electrochemical oxidation and that the concentration of total nitrogen in influent was reduced from 22.58 to 4.00 mg/L at the short retention time of 168 seconds through the electrochemical oxidation of nitrogen.

Preparation and Electrochemical Characteristics of DAAQ/CNFs Composite electrode for Supercapacitor (DAAQ가 코팅된 슈퍼커패시터용 CNFs전극 활물질의 제조 및 전기 화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1226-1229
    • /
    • 2004
  • Supercapacitors, also known as electrochemical capacitors, are being extensively studied due to an increasing demand for energy-storage systems. These devices offer many advantages over conventional secondary batteries, which include the ability of fast charge propagation, long cycle-life and better storage efficiency. That is to say supercapacitor bridges the gap between conventional capacitors and batteries. A new type electric double layer capacitor (EDLC) also called supercapacitors. Recently, supercapacitors concerns about their high power density and energy density. So we experiment with EDLC by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. The electrode for supercapacitor was prepared by synthesis of DAAQ covered CNFs. CNFs could be covered with very thin DAAQ oligomer from the results of CV, XRD, DSC, SEM images, and TEM images. Dissolved electrode active material in NMP solution has been drop-coated on carbon plate. Its electrochemical characteristics were investigated by cyclic voltammograms. And compared with different electrolyte of aqueous type. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors with respect to specific capacity and scan rate dependency.

  • PDF

Electrochemical Corrosion Behavior of Duplex Stainless SteelAISI 2205 in Ethylene Glycol-Water Mixture in the Presence of50 W/V % LiBr

  • Goodarzi, A.;Danaee, I.;Eskandari, H.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.58-67
    • /
    • 2016
  • The corrosion behavior of duplex stainless steel AISI 2205 was investigated in ethylene glycol-water mixture in the presence of 50 W/V % LiBr at different concentrations and different temperatures. Cyclic polarization, impedance measurements and Mott-Schottky analysis were used to study the corrosion behavior the semi conductive properties of the passive films. The results showed that with increasing in the ethylene glycol concentration to 10 V/V%, the corrosion rate of the steel alloy substrate increased. In higher concentrations of ethylene glycol, corrosion current of steel decreased. The results of scanning electron microscopy of electrode surface confirmed the electrochemical tests. Electrochemical experiment showed that duplex steel was stable for pitting corrosion in this environment. The increase in the ethylene glycol concentration led to increasing the susceptibility to pitting corrosion. The corrosion current increased as the temperature rise and also pitting potentials and repassivation potentials shifted towards the less positive values as the temperature increased. According to Mott-Schottky analysis, passive films of stainless steel at the different temperatures showed both n-type and p-type semiconductor behavior in different potential.

Study on the Output Current for Electrochemical Low-energy Neutrino Detector with Regards to Oxygen Concentration

  • Suda, Shoya;Ishibashi, Kenji;Riyana, Eka Sapta;Aida, Yani Nur;Nakamura, Shohei;Imahayashi, Yoichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.373-377
    • /
    • 2016
  • Background: Experiments with small electrochemical apparatus were previously carried out for detecting low-energy neutrinos under irradiation of reactor neutrinos and under natural neutrino environment. The experimental result indicated that the output current of reactor-neutrino irradiated detector was appreciably larger than that of natural environmental one. Usual interaction cross-sections of neutrinos are quite small, so that they do not explain the experimental result at all. Materials and Methods: To understand the experimental data, we propose that some biological products may generate AV-type scalar field B0, leading to a large interaction cross-section. The output current generation is ascribed to an electrochemical process that may be assisted by weak interaction phenomena. Dissolved oxygen concentrations in the detector solution were measured in this study, for the purpose of understanding the mechanism of the detector output current generation. Results and Discussion: It was found that the time evolution of experimental output current was mostly reproduced in simulation calculation on the basis of the measured dissolved oxygen concentration. Conclusion: We mostly explained the variation of experimental data by using the electrochemical half-cell analysis model based on the DO concentration that is consistent to the experiment.