• Title/Summary/Keyword: Electrochemical detection

Search Result 340, Processing Time 0.022 seconds

Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide

  • Maulidiyah, Maulidiyah;Azis, Thamrin;Lindayani, Lindayani;Wibowo, Dwiprayogo;Salim, La Ode Agus;Aladin, Andi;Nurdin, Muhammad
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.394-401
    • /
    • 2019
  • The unique study of TiO2 sol-gel modified carbon paste electrode (CPE) nanocomposites have been developed for electrochemical sensor detecting fipronil pesticide compound. We develop the easy synthesized TiO2 via a sol-gel method and modified in CPE which applied electrochemical system as cyclic voltammetry (CV) because the concentration is proportional with current peaks. We discover the TiO2 optimal mass used of 0.1 g which is compared with 0.7 g carbon and 0.3 mL paraffin. It has high-current anodic (Ipa) of 1.13×103 μA and high-current cathodic (Ipc) -0.96×103 μA in scan rate of 0.5 V/s. The limit of detection (LOD) of fipronil has been determined of 34.0×10-5 μM in percent recovery of 0.8%. Its high-stability for lifetime TiO2-CPE nanocomposites was expressed for 13 days which mean that can be used for detecting fipronil pesticide.

Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure

  • Quan De;Shin Woonsup
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • [ $DeniLite^{TM}$ ] laccase immobilized Pt electrode was used for amperometric detection of some catechol derivatives and o-aminophenol (OAP) derivative by means of substrate recycling. In case of catechol derivatives, the obtained sensitivities are 85, 79 and $57 nA/{\mu}M$ with linear ranges of $0.6\~30,\;0.6\~30\;and\; 1\~25 {\mu}M$ and detection limits (S/N=3) of 0.2, 0.2 and $0.3{\mu}M$ for 3,4-dihydroxycinnaminic acid (3,4-DHCA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), respectively. In case of OAP derivative, the obtained sensitivity is $237 nA/{\mu}M$ with linear range of $0.2\~15{\mu}M$ and detection limit of 70 nM for 2-amino-4-chlorophenol (2-A-4-CP). The response time $(t_{90\%})$ is about 2 seconds for each substrate and the long-term stability is around 40-50days for catechol derivatives and 30 days for 2-A-4-CP with retaining $80\%$ of initial activity. The optimal pHs of the sensor for these substrates are in the range of 4.5-5.0, which indicates that stability of the enzymatically oxidized product plays a very important role in substrate recycling. The different sensitivity of the sensor for each substrate can be explained by the electronic effect of the sugstituent on the enzymatically oxidized form.

Porous Silicon Microcavity Sensors for the Detection of Volatile Organic Compounds (휘발성 유기화합물 탐지용 다공성 실리콘 Microcavity 센서)

  • Park, Cheol Young
    • Journal of Integrative Natural Science
    • /
    • v.2 no.3
    • /
    • pp.211-214
    • /
    • 2009
  • A new porous silicon (PSi) microcavity sensor for the detection of volatile organic compounds (VOCs) was developed. PSi microcavity sensor exhibiting unique reflectivity was successfully obtained by an electrochemical etching of silicon wafer. When PSi was fabricated into a structure consisting of two high reflectivity muktilayer mirrors separated by an active layer, a microcavity was formed. This PSi microcavity is very sensitive structures. Reflection spectrum of PSi microcavity indicated that the full-width at half-maximum (FWHM) was of 10 nm and much narrower than that of fluorescent organic molecules or quantum dot. The detection of volatile organic compounds (VOCs) using PSi microcavity was achieved. When the vapor of VOCs condensed in the nanopores, the refractive indices of entire particle increased. When PSi microcavity was exposed to acetone, ether, and toluene, PSi microcavity in reflectivity was red shifted by 28 nm, 33 nm, and 20 nm for 2 sec, respectively.

  • PDF

Electrochemical Immunoassay based on the Dopamine-antigen Conjugate for Detecting Hippuric Acid (항원인 마뇨산에 결합된 도파민을 이용한 전기화학적 면역 분석법)

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.172-178
    • /
    • 2014
  • In this work, we describe an electrochemical immunosensor for simple, fast and quantitative detection of a urinary hippuric acid (HA). Urinary HA, of molecular weight 180 DA, is one of the major metabolites and biological indicators in toluene-exposed humans. Simple and ubiquitous monitoring of exposure to toluene is very important in occupational health care. We propose the electrochemical immunoassay based on the dopamine-antigen conjugate for detecting hippuric acid. Our electrochemical immunoassay system employs a conjugate of dopamine (DA) as an electrochemical active molecule and hippuric acid (HA) as an antigen. As an electrochemical aspect, dopamine (DA) containing two hydroxyl group can show excellent redox signal. Also, dopamine-tethered hippuric acid (DA-HA) shows the reversible redox signal in the immunoassay. The competition between HA and DA-HA generated electric signals proportional to HA concentration. The electrochemical immunoassay was performed with DA-HA on the screen printed carbon electrodes (SPCEs), and then applies the mixture antigen (HA) and HA-antibody. The electrical signals were proportional to HA in the range of 0.010~2.500 mg/mL which is enough range to be used for the point-of-care.

Determination of ${\gamma}-Aminobutyric$ Acid and Glutamic Acid in Rat Brain by High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ECD를 이용한 흰쥐의 뇌 중 감마 아미노부티르산 및 글루탐산의 정량)

  • 강종성;이순철
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.300-305
    • /
    • 1999
  • A sensitive and efficient assay method was applied to determine the level of glutamic acid (GA) and ${\gamma}-aminobutyric$ acid (GABA) in frontal cortex and hippocampus of rat administrated with ethanol and drugs. The compounds were derivatized with ο-phthalaldehyde (OPA) and 2-mercaptoethanof for precolunm analysis. The condition for the simultaneous determination of GA, GABA and $\beta-aminobutyric$ acid (BABA) by high performance liquid chromatography with electrochemical detection was reverse phase $C_{18}$ column as stationary phase, 0.1 M phosphate buffer containing 0.1 mM $Na_4EDTA$ : methanol = 55:45 (v+v) pH 3.8 as mobile phase and 0.7V electrode voltage. The stability of reaction product of GA, GABA and BABA with OPA could be increased by adding the same volume of polyethylene glycol 400 to reaction mixture. The GABA level in frotal cortex of rat was significantly decreased by the administration of picrotoxin and diazepam, but it was significantly increased by the administration of red ginseng total saponin, N-methyl-D-glucamine and (-)-deprenyl.

  • PDF

Electrochemical Determination of Dopamine Based on Carbon Nanotube-Sol-Gel Titania-Nafion Composite Film Modified Electrode

  • Park, Ji-Ae;Kim, Byung-Kun;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3123-3127
    • /
    • 2010
  • A highly sensitive electrochemical detection method for dopamine (DA) has been developed by relying on a multiwalled carbon nanotube (CNT)-sol-gel titania-Nafion composite film modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards DA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric and amperometric responses for DA compared to those obtained with both titania-Nafion/GC and Nafion/GC electrodes. The CNT-titania-Nafion/GC electrode gave a linear response ($R^2$ = 0.999) for DA from $0.5\;{\mu}M$ to 0.5 mM with a detection limit (S/N = 3) of $0.1\;{\mu}M$ and a good sensitivity of 150 mA/M while other electrodes such as CNT-Nafion/GC, titania-Nafion/GC, and a bare GC gave a sensitivity of 89, 39, and 36 mA/M, respectively. Besides, the CNT-titania-Nafion/GC electrode displayed very fast response time within 2 s. The modified electrode showed good selectivity against ascorbic acid. The modified electrode showed good stability and reproducibility. The CNT-titania-Nafion/GC electrode was applied to the determination of DA in urine and serum samples.

An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification

  • Faisal, Shaikh Nayeem;Hossain, Md. Mokarrom;Lee, Hye-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • An amperometric ascorbic acid selective sensor utilizing the transfer reaction of proton liberated from the dissociation of ascorbic acid in aqueous solution across an elliptic micro-hole water/organic gel interface is demonstrated. This redox inactive sensing platform offers an alternative way for the detection of ascorbic acid to avoid a fouling effect which is one of the major concerns in redox based sensing systems. The detection principle is simply measuring the current change with respect to the assisted transfer of protons by a proton selective ionophore (e.g., ETH 1778) across the micro-hole interface between the water and the polyvinylchloride-2-nitrophenyloctylether gel phase. The assisted transfer reaction of protons generated from ascorbic acid across the polarized micro-hole interface was first characterized using cyclic voltammetry. An improved sensitivity for the quantitative analysis of ascorbic acid was achieved using differential pulse stripping voltammetry with a linear response ranging from 1 to $100\;{\mu}M$ concentrations of ascorbic acid. As a demonstration, the developed sensor was applied for analyzing the content of vitamin-C in different types of commercial pharmaceutical tablets and syrups, and a satisfactory recovery from these samples were also obtained.

Green Synthesis of Platinum Nanoparticles by Electroreduction of a K2PtCl6 Solid-State Precursor and Its Electrocatalytic Effects on H2O2 Reduction

  • Kim, Kyung Tae;Jin, Sung-Ho;Chang, Seung-Cheol;Park, Deog-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3835-3839
    • /
    • 2013
  • A new synthesis route for Pt nanoparticles by direct electrochemical reduction of a solid-state Pt ion precursor ($K_2PtCl_6$) is demonstrated. Solid $K_2PtCl_6$-supported polyethyleneimine (PEI) coatings on the surface of glassy carbon electrode were prepared by simple mixing of solid $K_2PtCl_6$ into a 1.0% PEI solution. The potential cycling or a constant potential in a PBS (pH 7.4) medium were applied to reduce the solid $K_2PtCl_6$ precursor. The reduction of Pt(IV) began at around -0.2 V and the reduction potential was ca. -0.4 V. A steady state current was achieved after 10 potential cycling scans, indicating that continuous formation of Pt nanoparticles by electrochemical reduction occurred for up to 10 cycles. After applying the reduction potential of -0.6 V for 300 s, Pt nanoparticles with diameters ranging from $0.02-0.5{\mu}m$ were observed, with an even distribution over the entire glassy carbon electrode surface. Characteristics of the Pt nanoparticles, including their performance in electrochemical reduction of $H_2O_2$ are examined. A distinct reduction peak observed at about -0.20 V was due to the electrocatalytic reduction of $H_2O_2$ by Pt nanoparticles. From the calibration plot, the linear range for $H_2O_2$ detection was 0.1-2.0 mM and the detection limit for $H_2O_2$ was found to be 0.05 mM.

Comparison of Detection Sensitivity for Human Papillomavirus between Self-collected Vaginal Swabs and Physician-collected Cervical Swabs by Electrochemical DNA Chip

  • Nilyanimit, Pornjarim;Wanlapakorn, Nasamon;Niruthisard, Somchai;Takahashi, Masayoshi;Vongpunsawad, Sompong;Poovorawan, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10809-10812
    • /
    • 2015
  • Background: Human papillomavirus (HPV) DNA testing is an effective method to screen for precancerous changes in the cervix. Samples from self-collection rather than Pap smear can potentially be used to test for HPV as they are more acceptable and preferred for use in certain settings. The objective of this study was to compare HPV DNA testing from self-collected vaginal swabs and physician-collected cervical swabs. Materials and Methods: A total of 101 self-collected vaginal and physician-collected cervical swabs of known cytology from Thai women were tested by electrochemical DNA chip assay. The specimens were divided into 4 groups: 29 with normal cytology, 14 with atypical squamous cells of undetermined significance (ASCUS), 48 with low-grade squamous intraepithelial lesion (LSIL), and 10 with high-grade squamous intraepithelial lesion (HSIL). Results: Positive detection rates of HPV from self-collected swabs were similar to those from physician-collected swabs. Among specimens with abnormal cytology, HPV was found in 50% of self-collected swabs and 47.2% of physician-collected swabs. In specimens with normal cytology, 17.2% of self-collected swabs and 24.1% of physician-collected swabs were positive for HPV. Concordance was relatively high between results from self-collected and physician-collected samples. The most common HPV genotype detected was HPV 51. Conclusions: HPV DNA testing using self-collected swabs is a feasible alternative to encourage and increase screening for cervical cancer in a population who might otherwise avoid this important preventive examination due to embarrassment, discomfort, and anxiety.