• Title/Summary/Keyword: Electrochemical corrosion test

Search Result 351, Processing Time 0.025 seconds

Estimation of Critical Chloride Threshold Value in Concrete by the Accelerated Corrosion Test

  • Vicho, Victor C.;Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.201-204
    • /
    • 2006
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mix proportions, cement type and constituents, presence of admixtures, environmental factors, reinforcement surface conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and cyclic wet and dry seawater method, respectively and during the test, corrosion monitoring by half-cell potential method was carried out to detect the time to initiation of corrosion for individual test specimen. For this purpose, lollypop and right hexahedron test specimens were made for 31%, 42%, and 50% of W/C, respectively, and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with the water-cement ratio and accelerated corrosion test method, respectively and the critical chloride threshold values were found to range from 0.91 to $1.47kg/m^3$.

  • PDF

Corrosion Mechanism According to Localized Damage of Zn-Al-Mg Alloy Coated Steel Sheet Used in Plant Farm (플랜트팜용 3원계 (Zn-Al-Mg) 합금도금 강판의 국부손상에 따른 부식 메커니즘)

  • Jin Sung Park;Jae Won Lee;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2023
  • This study aimed to evaluate corrosion resistance of steel coated with GI and Zn-Al-Mg alloy using cyclic corrosion test (CCT) with electrochemical polarization and impedance measurements. Results showed that the Zn-Al-Mg alloy coated steel had a much higher corrosion rate than GI coated steel in early stages of corrosion. With prolonged immersion, however, the corrosion rate of the Zn-Al-Mg alloy coated steel greatly decreased, mainly owing to a significant decrease in the cathodic reduction reaction and an increase in polarization resistance at the surface. This was closely associated with the formation of protective corrosion products including Zn5(OH)8Cl2·H2O and Zn6Al2(OH)16CO3. Moreover, when the steel substrate was locally exposed due to mechanical damage, the kinetics of anodic dissolution from the coating layer and the formation of protective corrosion products on the surface of the Zn-Al-Mg alloy coated steel became much faster compared to the case of GI coated steel. This could provide a longer-lasting corrosion inhibition function for Zn-Al-Mg alloy coated steel used in plant farms.

Accelerated Prediction Methodologies to Predict the Outdoor Exposure Lifespan of Galvannealed Steel

  • Kim, Ki Tae;Yoo, Young Ran;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.86-91
    • /
    • 2019
  • Generally, atmospheric corrosion is the electrochemical degradation of metal that can be caused by various corrosion factors of atmospheric components and weather, as well as air pollutants. Specifically, moisture and particles of sea salt and sulfur dioxide are major factors in atmospheric corrosion. Using galvanized steel is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steel is widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance relative to iron. The atmospheric corrosion of galvanized steel shows complex corrosion behavior, depending on the plating, coating thickness, atmospheric environment, and air pollutants. In addition, corrosion products are produced in different types of environments. The lifespans of galvanized steels may vary depending on the use environment. Therefore, this study investigated the corrosion behavior of galvannealed steel under atmospheric corrosion in two locations in Korea, and the lifespan prediction of galvannealed steel in rural and coastal environments was conducted by means of the potentiostatic dissolution test and the chemical cyclic corrosion test.

Cavitation and Electrochemical Characteristics Using Hydrogen Overpotential Method for ALBC3 Alloy (ALBC3 합금의 수소과전압 현상을 이용한 캐비테이션과 전기화학적 특성)

  • Park, Jae-Cheul;Lee, Seung-Jun;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, the cavitation test and electrochemical experiments were conducted for ALBC3(Cu-Al) alloy that has an excellent corrosion resistance and cavitation characteristic in sea water. Based on the ASTMG32 regulation, the cavitation test was performed with the cavitation and cavitation erosion tester using piezoelectric effect. The electrochemical characteristics are evaluated with potentiostatic experiments in activation polarization potential range. As a result, cavitation damage is increased proportionally to temperature and time at $30{\mu}m$ amplitude. It is appeared that acceleration period in weight loss presented over 6 hours under the cavitation environment in sea water. In addition, corrosion damages were observed at the potential range of -3.2~-1.4 V as the result of potensiostatic experiments during 12 hours in activation polarization potential range.

Anti-Corrosion Behaviour of Rebar in Cement Mortar by Electrochemical Chloride Extraction (전기화학적 염소 추출법에 의한 시멘트 모르터내의 철근 방식)

  • Nam Sang Cheol;Lim Young Chang;Cho Won-Il;Cho Byung Won;Chun Hai Soo;Yun Kyung Suk
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.31-38
    • /
    • 2000
  • Anti-corrosion behaviour of rebar embedded in cement mortar containing chloride ions was investigated by electrochemical chloride extraction(ECE). $43\%$ of the initial chloride ions of the cement mortar was fixed to Friedel salts and the soluble chloride ions were successfully extracted by ECE method. Concentration profiles of the chloride ions were estimated by Fick's 2nd law with time and depth, and it was close to the real value. The corrosion potential increased to anodic direction after ECE test, and the corrosion of rebar was reduced as a result of AC impedance spectroscopy.

Intergranular Corrosion of Stainless Steel (스테인리스강 입계부식)

  • Kim, Hong Pyo;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.183-192
    • /
    • 2018
  • Stainless steel can be classified into three categories depending on the microstructure as austenitic stainless steel, ferritic stainless steel and martensitic stainless steel. Generally, stainless steel is extremely resistant to corrosion as the name implies. However, under specific environments, susceptibility to localized corrosion such as pitting, intergranular corrosion and stress corrosion cracking increases. This paper reviewed the state of arts on intergranular corrosion mechanisms, countermeasures on intergranular corrosion and intergranular corrosion test methods. Intergranular corrosion is mostly related with chromium depletion at the grain boundary and sometimes with segregation of electroactive elements in solution annealed stainless steel. Countermeasures on intergranular corrosion include avoiding chromium depletion by heat treatment and the addition of alloying elements. Sensitization evaluation of stainless steel was performed either through acid immersion test or electrochemical test. The methods were standardized in (Japanese Industrial Standards). Even though are useful in evaluating the degree of sensitization for industrial purpose but do not provide detailed information about sensitization mechanism, cause and chromium profile.

Evaluation of Grooving Corrosion and Electrochemical Properties of H2S Containing Oil/Gas Transportation Pipes Manufactured by Electric Resistance Welding

  • Rahman, Maksudur;Murugan, Siva Prasad;Ji, Changwook;Cho, Yong Jin;Cheon, Joo-Yong;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.109-115
    • /
    • 2018
  • Electrical Resistance Welding (ERW) on a longitudinal seam-welded pipe has been extensively used in oil and gas pipelines. It is well known that the weld zone commonly suffers from grooving corrosion in ERW pipes. In this paper, the grooving corrosion performances of API X65 grade non-sour service (steel-A) and API X70 grade sour gas resistant (steel-B) steel electrical resistance welding pipelines were evaluated. The microstructure of the bondline is composed of coarse polygonal ferrite grains and several elongated pearlites. The elongated pattern is mainly concentrated in the center of the welded area. The grooving corrosion test and electrochemical polarization test were conducted to study the corrosion behavior of the given materials. A V-shaped corrosion groove was found at the center of the fusion zone in both the steel-A and steel-B ERW pipes, as the corrosion rate of the bondlines is higher than that of the base metal. Furthermore, the higher volume fraction of pearlite at the bondline was responsible for the higher corrosion rate at the bondline of both types of steel.

Development of Corrosion Rust Removing Unit for Small Ship Propeller (소형선박용 프로펠러의 부식 녹 제거장치 개발)

  • Kim, Gui-Shik;Han, Se-Woong;Hyun, Chang-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.72-77
    • /
    • 2005
  • The materials used in a ship screw propeller are commonly made with brass. The seawater corrosion and seawater cavitation of the screw propeller reduces the propulsive performance of the ship. In screw manufacturing, the corrosion rust of the screw propeller is removed through a hand grinding method. The grinding process produces dust of the heavy metals from the brass. The dust creates a poor working environment that is harmful to the health of the workers. An automatic corrosionrust removing apparatus, using a blasting method, was developed for the improvement of screw polishing conditions and its working environment. The performance of this apparatus was investigated by surface roughness, weight loss rate, hardness, electrochemical corrosion resistance, and cavitation erosion, after removing of the corrosion rust under various blasting conditions. Two medias of alumina and emery were used in this experiment. The surface roughness and hardness of the screw were improved by this apparatus. The electrochemical corrosion potential (Ecorr) and current density (Icorr) were measured by the dynamic polarization method, using a potentiostat,under the conditions of surface polishing with grinding, blasting, wire brushing, and fine sand papering. The test results prove that the new corrosion rust-removing apparatus improves the surface performance of a screw propeller.

Influence of Inhibitors on the Corrosion of Al and Al-composites in Chloride-containing Solutions - A Review

  • Kumar, Neeraj;Srivastava, Ashok K.;Gautam, Prabhat;Manoj, M.K.
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.280-286
    • /
    • 2022
  • Corrosion is a natural, inevitable process, and is one of the world's most serious problems. Losses incurred due to corrosion are extremely expensive for society. Several technological strategies have been explored and implemented to address these losses. The use of inhibitors to prevent corrosion is a common and efficient method to reduce corrosion losses. This review covers Al and Al-composite corrosion inhibitors in chloride-containing solutions, because of their popularity in a broad array of industrial applications. A vast number of studies in the literature detail the common tendency of Al and Al-composites with reinforcements to deteriorate. Accordingly, it is worthwhile to employ inhibitors to protect them, as discussed in the present work. The emphasis is on selecting the smartest corrosion inhibitor and evaluating its performance. According to the study, the most commonly used corrosion inhibitors are 1,4-naphthoquinone (NQ), 1,5-naphthalene diol, 3-amino-1,2,4-triazole-5-thiol (ATAT), ammonium tetrathiotungstate, clotrimazole, amoxicillin, antimicrobial and antifungal drugs. Electrochemical impedance spectroscopy (EIS), potentiodynamic (PDP), and weight loss were among the most commonly used modern electrochemical technologies to test inhibitors' efficacy under environmental conditions.

The Effect of Grain Size on the Corrosion Resistance of 429EM Steel (429EM 강의 내식성에 미치는 결정립 크기의 영향)

  • Jung, Byong-Ho;Ahn, Yong-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.90-95
    • /
    • 2010
  • The effects of grain size on the corrosion resistance of 429EM ferritic stainless steels for automobile exhaust system were investigated. Using specimens held at maximum service temperature of $950^{\circ}C$ for 10~70 hours, electrochemical polarization tests were conducted. While corrosion current density, $I_{corr}$, was influenced little by grain size, pitting potential, $E_p$, was increased with an increase of grain size. Sensitizaton at grain boundary occurred when the specimen were held at $950^{\circ}C$ for above 50 hours because of the dissolution of precipitates and grain coarsening.