• Title/Summary/Keyword: Electrochemical catalyst

Search Result 342, Processing Time 0.027 seconds

Performance Charateristics of Direct Borohydrides Fuel Cell with Novel Catalyst (귀금속 촉매를 사용한 직접 보로하이드라이드 연료전지의 특성 연구)

  • Jung, M.K.;Shin, D.R.;Seol, Y.K.;Jung, D.H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • Direct borohydrides fuel cell (DBFC) was emerged to complement the problem of DMFC's low performance and methanol crossover to the cathode and to apply the fuel cell to portable and mobile devices. In this study, the characteristics of novel catalysts was tested to establish the electrode preparation process of DBFC. Pt black and carbon supported-Pt by paste method were used as the cathode catalysts. Pt black, carbon supported-Au and $AB_5$ alloy were used as the anode catalysts. The characteristics of the electrodes were analyzed by XRD, SEM, EDS. The performance test of single cell using the electrodes were carried out in order to evaluate the electrode performance. In the result, the maximum power output was obtained as 366 mW/mg when using Pt/C as anode and cathode catalysts.

Study on Reaction Characteristics and Catalysts to Reform Diesel for Production of Hydrogen (수소생산을 위한 디젤 개질용 촉매와 반응특성에 관한 연구)

  • Kang, In-Yong;Bae, Joong-Myeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • Diesel is one of the best hydrogen systems, which has very high volumetric density $[kg\;H_2/m^3]\;(>100)\;and\;gravimetric\;density[\%\;H_2]\;(>\;15)$Several catalysts were selected for diesel reforming. 3 catalysts of our group (NECS-1, NECS-2, NECS-3) and 2 commercial catalysts (Sud-Chemie, Inc, FCR-HCl4, FCR-HC35) were used to reform diesel. NECS-1 showed the best performance to reform diesel. In addition to these results, we studied on reaction characteristics for better understanding about auto thermal reforming of diesel by investigating product gas concentrations and temperature Profiles along the catalyst bed. We found technological issues such as fuel delivery and thermal configuration between front exothermic part and rear endothermic part.

The Study on In-situ Measurement of Hydrogen Permeability through Polymer Electrolyte Membranes for Fuel Cells (연료전지용 고분자전해질막의 실시간 수소 투과도 측정법 연구)

  • Lim, Yoon Jae;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2016
  • Polymer electrolyte membranes (PEMs) are key components to determine electrochemical fuel cell performances, in addition to electrode materials. The PEMs need to satisfy selective transport behaviors to small molecules including gases and protons; the PEMs have to transport protons as fast as possible, while they should act as hydrogen barriers, since the permeated gas induces the thermal degradation of cathode catalyst, resulting in rapid electrochemical reduction. To date, limited tools have been used to measure how fast hydrogen gas permeates through PEMs (e.g., Constant volume/variable Pressure (time-lag) method). However, most of the measurements are conducted under vacuum where PEMs are fully dried. Otherwise, the obtained hydrogen permeance is easily changeable, which causes the measurement errors to be large. In this study, hydrogen permeation properties through Nafion212 used as a standard PEM are evaluated using an in-situ measurement system in which both temperature and humidity are controlled at the same time.

CO Tolerance Improvement of MEA Using Metal Thin Film by Sputtering Method in PEM Fuel Cell (스퍼터링 공정으로 제조된 금속박막을 이용한 고분자전해질 연료전지 막-전극접합체의 일산화탄소에 대한 내구성 연구)

  • Cho, Yong-Hun;Yoo, Sung-Jong;Cho, Yoon-Hwan;Park, Hyun-Seo;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • When reformer for fuel cell is used, CO in hydrogen gas leads to a seriously decreased membrane electrode assembly (MEA) performance by catalyst poisoning. The effect of CO on performance of modified MEA by sputtering method is studied in this paper. The experimental results show that sputtered Pt and Ru thin film improve a single cell performance of MEA and sputtered metal thin film has a CO tolerance. The air injection process on anode show improved CO tolerance test result. Moreover, Pt, Ru and PtRu thin film by sputtering had influence on the CO tolerance with air injection process.

Photoelectrochemical Water Oxidation Using ZnO Nanorods Coupled with Cobalt-Based Catalysts

  • Jeon, Tae-Hwa;Choi, Sung-Kyu;Jeong, Hye-Won;Kim, Seung-Do;Park, Hyun-Woong
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.187-192
    • /
    • 2011
  • Photoelectrochemical performances of ZnO electrodes are enhanced by coupling with cobalt-based catalyst (CoPi) in phosphate electrolyte (pH 7). For this study, hexagonal pillar-shaped ZnO nanorods are grown on ZnO electrodes through a chemical bath deposition, onto which CoPi is deposited with different photodeposition times (10-30 min). A scanning electron microscopic study indicates that CoPi deposition does not induce any change of ZnO morphology and an energy-dispersive X-ray spectroscopic analysis shows that inorganic phosphate ions (Pi) exist on ZnO surface. Bare ZnO electrodes generate the current of ca. $0.36mA/cm^2$ at a bias potential of 0.5 V vs. SCE, whereas ZnO/CoPi (deposited for 10 min) has ca. 50%-enhanced current ($0.54mW/cm^2$) under irradiation of AM 1.5G-light ($400mW/cm^2$). The excess loading of CoPi on ZnO results in decrease of photocurrents as compared to bare ZnO likely due to limited electrolyte access to ZnO and/or CoPi-mediated recombination of photogenerated charge carriers. The primary role of CoPi is speculated to trap the photogenerated holes and thereby oxidize water into molecular oxygen via an intervalency cycle among Co(II), Co(III), and Co(IV).

Effects of Diffusion Layer (DL) and ORR Catalyst (MORR) on the Performance of MORR/IrO2/DL Electrodes for PEM-Type Unitized Regenerative Fuel Cells

  • Choe, Seunghoe;Lee, Byung-Seok;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • This study aims to examine the influences of substrates/diffusion layers (DL) and oxygen reduction reaction catalysts ($M_{ORR}$) on the performance of $M_{ORR}/IrO_2$/DL-type bifunctional oxygen electrodes for use in polymer electrolyte membrane (PEM)-type unitized regenerative fuel cells (URFC). The $M_{ORR}/IrO_2$/DL electrodes were prepared via two sequential steps: anodic electrodeposition of $IrO_2$ on various DLs and fabrication of $M_{ORR}$ layers (Pt, Pd, and Pt-Ru) by spraying on $IrO_2/DL$. Experiments using different DLs, with Pt as the $M_{ORR}$, revealed that the roughness factor of the DL mainly determined the electrode performance for both water electrolyzer (WE) and fuel cell (FC) operations, while the contributions of porosity and substrate material were insignificant. When Pt-Ru was utilized as the $M_{ORR}$ instead of Pt, WE performance was enhanced and the electrode performance was assessed by analyzing round-trip efficiencies (${\varepsilon}_{RT}$) at current densities of 0.2 and $0.4A/cm^2$. As a result, using Pt-Ru instead of Pt alone provided better ${\varepsilon}_{RT}$ at both current densities, while Pd resulted in very low ${\varepsilon}_{RT}$. Improved efficiency was related to the additional catalytic action by Ru toward ORR during WE operation.

Effect of Gas Diffusion Layer on La0.8Sr0.2CoO3 Bifunctional Electrode for Oxygen Reduction and Evolution Reactions in an Alkaline Solution (알칼리용액에서 산소환원 및 발생반응에 대한 La0.8Sr0.2CoO3 전극의 기체확산층 영향)

  • LOPEZ, KAREEN J.;YANG, JIN-HYUN;SUN, HO-JUNG;PARK, GYUNGSE;EOM, SEUNGWOOK;RIM, HYUNG-RYUL;LEE, HONG-KI;SHIM, JOONGPYO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2016
  • Various commercially available gas diffusion layers (GDLs) from different manufacturers were used to prepare an air electrode using $La_{0.8}Sr_{0.2}CoO_3$ perovskite (LSCP) as the catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in an alkaline solution. Various GDLs have different physical properties, such as porosity, conductivity, hydrophobicity, etc. The ORR and OER of the resulting cathode were electrochemically evaluated in an alkaline solution. The electrochemical properties of the resulting cathodes were slightly different when compared to the physical properties of GDLs. Pore structure and conductivity of GDLs had a prominent effect and their hydrophobicities had a minor effect on the electrochemical performances of cathodes for ORR and OER.

Application of Pine Peroxidase to the Amperometric Determination of Hydrogen Peroxidase (과산화수소의 전류법적 정량을 위한 소나무 과산화효소의 활용)

  • Yoon, Kil-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.329-334
    • /
    • 2013
  • A pine needle-embedded graphite enzyme electrode, of which bonding agent is CSM rubber, was newly designed and its electrochemistry was studied based on the amperometry. It involved a ground green leaves of pine tree as a zymogen together with electrochemical mediator, ferrocene within the paste. The plots of ln($i(1-e^{nf{\eta}})$) vs. ${\eta}$ and Lineweaver-Burk at the low potential (-100 to -500 mV) showed good linearities indicating that the amperometric response is by the catalytic power of pine peroxidase. Electrochemical parameters obtained, symmetry factor (${\alpha}$, 0.17), limiting current ($i_1$, 1.99 $A/cm^2$), exchange current density ($i_0$, $5.86{\times}10^{-5}\;A/cm^2$), Michaelis constant ($K_M$, $1.68{\times}10^{-3}$ M) and many others showed that pine peroxidase discharges the role of catalyst quantitatively on the electrode surface. Those proved that the practical use of pine peroxidase is promising in place of the marketed.

Effects of Shut-down Process on Degradation of Polymer Electrolyte Membrane Fuel Cells I. Effects of Hydrogen Removal on the Degradation (운전 정지 시 보관방법이 고분자 전해질 연료전지의 열화에 미치는 영향 I. 잔류 수소 제거 방법의 영향)

  • Lim, Sang-Jin;Cho, Eun-Ae;Lee, Sang-Yeop;Kim, Hyoung-Juhn;Lim, Tae-Hoon;Lee, Kwan-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.118-123
    • /
    • 2006
  • Degradation of polymer electrolyte membrane fuel cell (PEMFC) that is facilitated by on/off cycles is one of the most important issues for commercialization of fuel cell vehicles. When a PEMFC stack is shut down, residual hydrogen and induce high voltage equivalent to open circuit voltage to the cathode side that might cause sintering of Pt catalyst and facilitate formation of hydrogen peroxide at the anode side that might decompose $Nafionc\'{A}$ membrane. In this study, degradation of PEMFC exposed to repetitive on/off cycles was investigated by measuring i-V characteristics, ac impedance, cyclic voltammograms, gas leak, cross-sectional SEM images, and TEM images. To prevent degradation of PEMFC caused by the residual gases, hydrogen was removed from anode gas channel by gas-purging and by using a dummy resistance, that were found to be a very effective method.

Boosting Power Generation by Sediment Microbial Fuel Cell in Oil-Contaminated Sediment Amended with Gasoline/Kerosene

  • Aleman-Gama, Elizabeth;Cornejo-Martell, Alan J.;Kamaraj, Sathish Kumar;Juarez, Katy;Silva-Martinez, Susana;Alvarez-Gallegos, Alberto
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.308-320
    • /
    • 2022
  • The high internal resistance (Rint) that develops across the sediment microbial fuel cells (SMFC) limits their power production (~4/10 mW m-2) that can be recovered from an initial oil-contaminated sediment (OCS). In the anolyte, Rint is related to poor biodegradation activity, quality and quantity of contaminant content in the sediment and anode material. While on the catholyte, Rint depends on the properties of the catholyte, the oxygen reduction reaction (ORR), and the cathode material. In this work, the main factors limiting the power output of the SMFC have been minimized. The power output of the SMFC was increased (47 times from its initial value, ~4 mW m-2) minimizing the SMFC Rint (28 times from its initial value, 5000 ohms), following the main modifications. Anolyte: the initial OCS was amended with several amounts of gasoline and kerosene. The best anaerobic microbial activity of indigenous populations was better adapted (without more culture media) to 3 g of kerosene. Catholyte: ORR was catalyzed in birnessite/carbon fabric (CF)-cathode at pH 2, 0.8M Na2SO4. At the class level, the main microbial groups (Gammaproteobacteria, Coriobacteriia, Actinobacteria, Alphaproteobacteria) with electroactive members were found at C-anode and were associated with the high-power densities obtained. Gasoline is more difficult to biodegrade than kerosene. However, in both cases, SMFC biodegradation activity and power output are increased when ORR is performed on birnessite/CF in 0.8 M Na2SO4 at pH 2. The work discussed here can focus on bioremediation (in heavy OCS) or energy production in future work.