• Title/Summary/Keyword: Electrochemical behavior

Search Result 806, Processing Time 0.032 seconds

Biocides Effect on the Microbiologically Influenced Corrosion of Pure Copper by Desulfovibrio sp.

  • Onan, Mert;Ilhan-Sungur, Esra;Gungor, Nihal Dogruoz;Cansever, Nurhan
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2018
  • The aims of this study were to determine the corrosion behavior of pure copper in the presence of Desulfovibrio sp. and also to investigate the effects of glutaraldehyde (GD) and isothiazolinone (ISO) on the corrosion behavior of pure copper in the presence of this sulfate-reducing bacteria (SRB) strain by using electrochemical techniques. Electrochemical measurements of pure copper were carried out at specified time intervals (0, 8, 24, 48, and 96 hr) over a period of exposure. Corrosion rates of pure copper from anodic and cathodic Tafel slopes and corrosion potential ($E_{corr}$) were determined. Biofilm and corrosion products on the copper surfaces were observed by Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectrometry (EDS) analyses. The effects of solution types (PC (Postgate's C medium) and SRB (Desulfovibrio sp.)) and exposure times of copper and biocides (ISO or GD) on the corrosion rates of pure copper were evaluated by statistical analyses. As a result of the FESEM analysis, biofilm formation was observed on the surfaces of pure copper exposed to the Desulfovibrio sp. cultures both with and without the biocides. The results show that the pure copper was corroded by Desulfovibrio sp. However, the addition of GD or ISO to the Desulfovibrio sp. culture resulted in a decrease in the corrosion rate of the pure copper. It was also observed that both of the biocides showed a similar effect on pure copper's corrosion rate caused by Desulfovibrio sp.

Effects of Ag and Cu Additions on the Electrochemical Migration Susceptibility of Pb-free Solders in Na2SO4 Solution

  • Yoo, Y.R.;Nam, H.S.;Jung, J.Y.;Lee, S.B.;Park, Y.B.;Joo, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.50-55
    • /
    • 2007
  • The smaller size and higher integration of advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, electronic components respond to applied voltages by electrochemical ionization of metal and the formation of a filament, which leads to short-circuit failure of an electronic component, which is termed electrochemical migration. This work aims to evaluate electrochemical migration susceptibility of the pure Sn, Sn-3.5Ag, Sn-3.0Ag-0.5Cu solder alloys in $Na_{2}SO_{4}$. The water drop test was performed to understand the failure mechanism in a pad patterned solder alloy. The polarization test and anodic dissolution test were performed, and ionic species and concentration were analyzed. Ag and Cu additions increased the time to failure of Pb-free solder in 0.001 wt% $Na_{2}SO_{4}$ solution at room temperature and the dendrite was mainly composed of Sn regardless of the solders. In the case of SnAg solders, when Ag and Cu added to the solders, Ag and Cu improved the passivation behavior and pitting corrosion resistance and formed inert intermetallic compounds and thus the dissolution of Ag and Cu was suppressed; only Sn was dissolved. If ionic species is mainly Sn ion, dissolution content than cathodic deposition efficiency will affect the composition of the dendrite. Therefore, Ag and Cu additions improve the electrochemical migration resistance of SnAg and SnAgCu solders.

A Study on the Electronic Properties and Electrochemical Behavior of Rare Earch Metal(Ⅲ) Complexes (Ⅲ) (희토류금속(Ⅲ) 착물들의 전자적 성질과 전기화학적 거동에 관한 연구 (Ⅲ))

  • Choe, Chil Nam;Son, Hyo Yeol
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.590-597
    • /
    • 1994
  • The chemical behavior of the trivalent lanthanide$(Pr^{3+}, Eu^{3+}, Gd^{3+} 그리고 Yb^{3+})$complexes with organo-ligand (2,2,6,6-tetramethyl-3,5-heptanedione) has been investigated by the use of UV/Vis-spectrophotometric, magnetics, and electrochemical method. The two or three energy absorption bands are observed by the spectra of these complexes. The magnetitude of crystal field splitting energy, the spin pairing energy and bond stength was obtained from the spectra of the complexes. These are found to be localization, low-spin (or high-spin state, and strong bonding strength. The magnetic dipole moment are found to be diamagnetic complexes (or paramagnetic). The electrochemical behavior of complexes was observed by the use of cyclic voltammetry in aprotic media. These reduction peaks were irreversible two and three step reduction processes by electron transfer.

  • PDF

Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC (고분자 전해질 연료전지 양극 작동 환경에서 실험 시간 및 작동 전압 변수에 따른 316L 스테인리스강의 전기화학적 특성과 손상 거동)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.451-465
    • /
    • 2021
  • In this investigation, electrochemical characteristics and damage behavior of 316L stainless steel polymer electrolyte membrane fuel cell(PEMFC) were analyzed by potentiodynamic and potentiostatic tests in cathode operating condition of PEMFC. As the result of potentiodynamic polarization test, range of passive region was larger than range of active region. In the result of potentiostatic test, damage depth and width, pit volume, and surface roughness were increased 1.57, 1.27, 2.48, and 1.34 times, respectively, at 1.2 V compared to 0.6 V at 24 hours. Also, as a result of linear regression analysis of damage depth and width graph, trend lines of damage depth and width according to applied potentials were 16.6 and 14.3 times larger, respectively. This demonstrated that applied potential had a greater effect on pitting damage depth of 316L stainless steel. The damage tendency values were 0.329 at 6 hours and 0.633 at 24 hours with applied potentials, representing rapid growth in depth direction according to the test times and applied potentials. Scanning electron microscopy images revealed that surface of specimen exhibited clear pitting damage with test times and applied potentials, which was thought to be because a stable oxide film was formed by Cr and Mo.

Electrochemical Analysis of CdTe Deposition Using Cyclovoltammetric Method for Hybrid Solar Cell Application (나노복합 태양전지를 위한 CdTe 전착 거동의 순환전류법을 이용한 전기화학적 분석)

  • Kim, Seong-Hun;Han, Wone-Keun;Jin, Hong-Sung;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.197-202
    • /
    • 2009
  • The electrodeposition in acidic aqueous electrolyte bath of cadmium telluride on gold electrodes has been studied by electrochemical analysis. Conventional cyclic voltammetry using potentiostat is considered as a reliable method to study electrochemical behavior of electrodeposition of CdTe. In this paper, the mechanism of CdTe deposition and its cyclic voltammetry were studied with the Te ion concentration, temperature, potential, and scan rate. We also investigated surface morphologies using FESEM and atomic composition of Cd and Te using EDS. Atomic composition of Cd and Te were varied with Te ion concentration in the electrolyte.