• Title/Summary/Keyword: Electrochemical Treatment

Search Result 668, Processing Time 0.031 seconds

An Experimental Study on the Effect of Sensor Line Number on the Reactivity Characteristic of Corrosion Sensor Reactive with Chloride Ion to Immigrate into Concrete (콘크리트내로 침투하는 염소이온 반응형 부식센서의 응답특성에 미치는 센서 세선 수의 영향에 관한 실험적 연구)

  • Lee, Hyun-Seok;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.143-152
    • /
    • 2014
  • In this study, the sensor response and sensitivity is experimented and analyzed quantitatively by the line numbers of chlorine ion reaction type corrosion sensor that is developed. The sensor response of the developed corrosion sensor is verified with properties of chlorine ion. The multilineal sensor is shown a large resistance change more than the single line sensor by damage of the sensor. And, the resistance change of sensor is as large as high concentration of NaCl aqueous solution, the sensitivity of multilineal sensor is higher than single line sensor's, and the depth of sensor's location is as large as the increasing of resistance change time (cycle). These results suggest that, the developed corrosion sensor could sense corrosion reaction, sensor sensitivity and change of resistance for chloride ion. Especially, It was judged that 7 line sensor was the most superior for monitoring chloride ion immigration into concrete.

The Electrical Properties of Aluminum Bipolar Plate for PEM Fuel Cell System

  • Oh, Mee-hye;Yoon, Yeo-Seong;Park, Soo-Gil;Kim, Jae-Yong;Kim, Hyun-Hoo;Osaka, Tetsuya
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.204-207
    • /
    • 2004
  • In this work, we present the electrochemical properties of Al bipolar plate, which can be re-searched for the application of PEMFC system. Bulk resistance of the plate was measured with a four-point probe method. The electrical conductivity of noble metal coated Al plate was 4.40 x 10$^4$ S/cm. On the other hand, the electrical interfacial resistance of the noble metal coated Al plate valued at 0.15 mΩ-$\textrm{cm}^2$ and that of graphite was 0.26 mΩ-$\textrm{cm}^2$ under the holding pressure of 140 N/$\textrm{cm}^2$ at the applied current of 5 A. And the performance of Al bipolar plate for PEMFC was evaluated at various conditions. The single cell performance was more than 0.43 W/$\textrm{cm}^2$ (0.47 Wig) for noble metal coated Al bipolar plate at 5$0^{\circ}C$ under atmospheric pressure in external humidified hydrogen and oxygen condition. As the present results, we could show the results that the noble metal coated Al bipolar plates were favorable in the aspect of electrical properties compared with those of the commercialized resin-impregnated graphite plates.

Synthesis and Electrochemical Characteristics of Rare Earths Metal Complexes (희토류금속 착물의 합성과 전기화학적 특성)

  • Chil Nam Choe;Suk Jin Yuon;Il Du Kim;Sung Pyung Kim;Youn Soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.496-503
    • /
    • 1989
  • The chemical behavior of trivalent lanthanide (Pr(III) and Yb(III)) and 2, 2, 6, 6-tetramethyl-3, 5-heptanedione(dipivaloylmethane) complexes was investigated by the use of direct current, differential pulse polarography and cyclic voltammetry. In this study, it was founded that the reduction of trivalent lanthanide complexes was observed by one electron transfer process at Epc = -0. 13 V and -0.80 V of Pr(III), and -0.02 V of Yb(III) vs. Ag-AgCl electrode. Also, it was founded that the treatment of DP and CV to the case of a first-order chemical equilibrium reaction preceding a reversible and irreversible one electron transfer reaction, (a >0. 5) the socalled ErCr electrode process. The equilibrium constant (lnK) obtained, of various solvents, these constant were founded to be increases with decreasing dielectric constant of the solvents. Plots of lnK for these reaction against ln(l/D) for the solvents was fairly straight lines, and the behavior of the heavier lanthanides was decreased equilibrium constant with increasing atomic number.

  • PDF

Characterization of the LSGM-Based Electrolyte-Supported SOFCs (LSGM계 전해질 지지형 고체산화물 연료전지의 특성평가)

  • Song, Eun-Hwa;Kim, Kwang-Nyeon;Chung, Tai-Joo;Son, Ji-Won;Kim, Joo-Sun;Lee, Hae-Weon;Kim, Byung-Kook;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.270-276
    • /
    • 2006
  • LSGM(($La_xSr_{1-x})(Ga_yMg_{1-y})O_3$) electrolyte is known to show very serious interfacial reaction with other unit cell components, especially with an anode. Such an interfacial reaction induced the phase instability of constituent component and deterioration of the unit cell performance, which become the most challenging issues in LSGM-based SOFCs. In this study, we fabricated LSGM($La_{0.8}Sr_{0.2}Ga_{0.83}Mg_{0.17}O_x$) electrolyte supported-type cell in order to avoid such interfacial problem by lowering the heat-treatment temperature of the electrode fabrication. According to the microstructural and phase analysis, there was no serious interfacial reaction at both electrolyte/anode and electrolyte/cathode interfaces. Moreover, from the electrochemical characterization of the unit cell performance, there was no distinct deterioration of the open cell voltage as well as an internal cell resistance. These results demonstrate the most critical point to be concerned in LSGM-based SOFC is either to find a proper electrode material which will not give any interfacial reaction with LSGM electrolyte or to properly adjust the processing variables for unit cell fabrication, to reduce the interfacial reaction.

Analysis of the Corrosion Behavior According to the Characteristics of Sigma Phase Formed in Super Austenitic Stainless Steel (슈퍼 오스테나이트계 스테인리스강의 시그마상 특성에 따른 부식거동 분석)

  • Kim, Ye Eun;Park, Jin-seong;Cho, Dong Min;Hong, Seung Gab;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.203-210
    • /
    • 2020
  • The corrosion behavior of super austenitic stainless steel was studied by examining the characteristics of the sigma phase formed in the steel. A range of experimental and analytical methods was employed, including potentiodynamic polarization tests, critical pitting temperature tests, transmission electron microscopy, and energy-dispersive spectroscopy. Three steel samples with different sigma phase levels were obtained by intentionally adjusting the manufacturing process. The results showed that the corrosion resistance of the samples was strongly dependent upon the size and distribution of the sigma phase precipitated in the samples. The larger the size of the sigma phase, the higher the Mo content in the sigma phase and the higher the depletion level of Mo at the interface between the matrix/sigma phase, the more samples with a coarse-sized sigma phase were susceptible to localized pitting corrosion at the interface. These results suggest that various manufacturing processes, such as welding and the post-heat treatment of the steel, should be optimized so that both the size and fraction of the sigma phase precipitated in the steel are small to improve the resistance to localized corrosion.

Development and application of ex-solution nanocatalyst (용출 현상 기반 나노촉매의 개발 및 응용)

  • Kim, Jun Hyuk;Kim, Jun Kyu;Jung, WooChul
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.200-210
    • /
    • 2020
  • Supported catalysts are at the heart of manufacturing essential chemical, agricultural and pharmaceutical products. While the longevity of such systems is critically hinged on the durability of metal nanoparticles, the conventional deposition/dispersion techniques are difficult to enhance the stability of the metal nanoparticles due to the lack of control over the interaction between metal-support. Regarding this matter, ex-solution has begun to be recognized as one of the most promising methodologies to develop thermally and chemically robust nanoparticles. By dissolving desired catalysts as a cation form into a parent oxide, fine and uniformly distributed metal nano-catalysts can be subsequently grown in situ under reductive heat treatment, which is referred to ex-solution. Over the several years, ex-solved analog has resulted in tremendous progress in the chemical-electrochemical applications due to the exceptional robustness coupled with ease synthesis. Herein, we describe the ex-solution process in detail which therein introducing the unique characteristics of ex-solved particles that distinguish them from conventionally dispersed nanoparticles. We then go through the history of science regarding the ex-solution phenomena and summarize several major research achievements which embrace the ex-solved nanoparticles to markedly promote the catalytic performances. In conclusion, we address the remaining challenges and the future perspectives of this rapidly growing field.

Electrochemical Corrosion Characteristics of Dental Prostheses High-Palladium Alloys (치과용 고-Pd계 합금의 부식특성)

  • 김기주;이진형
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.511-518
    • /
    • 2001
  • In vitro corrosion resistance of the commercially used 76.5wt.%Pd-17.6%Cu-7.2%Ga and 77.3%Pd-6.0%Ga dental Prostheses high-Palladium system alloys in cast, degassing and porcelain-firing heat treatment conditions were evaluated by the potentiodynamic polarization technique in the de-aerated 0.9%NaCl and a modified Fusayama electrolyte. From the corrosion rate experimental results, we found that there is a small difference in the corrosion resistance depending on the microstructure. However. it was so small that there is no significant problem as a dental material. The 77.3%Pd-6.0%Ga showed better corrosion resistance than the 76.5%Pd-11.6%Cu-7.2%Ga dental Prostheses high-palladium system alloys. These experimental observations in 76.5%Pd-11.6%Cu-7.2%Ga alleys are mainly due to a rapid quenching and Cu in the alloy which accelerate the eutectic reaction with a segregation and Precipitates in the microstructure. On the ocher hand, 77.3%Pd-6.0%Ga alloys, which are solid-solution matrix, show much better col·lesion resistance compared with that of 76.5%Pd-11.6%Cu-7.2%Ga alloys.

  • PDF

Anodic Reactions at a Pb-Ag Anode in Sulfuric Acid Solutions Containing Manganese(II) (망간(II)을 함유한 황산용액에서 Pb-Ag 양극의 산화반응)

  • Lee, Man-Seung;Nicol, M.J.
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.34-41
    • /
    • 2017
  • The effect of Mn(II) concentration on the anodic reactions occurring on a Pb-Ag electrode in sulfuric acid solutions has been studied by potentiostatic oxidation in the potential range of 1.8 to 2.0 V. High oxidation potentials and low initial concentrations of Mn(II) resulted in higher concentrations of soluble Mn(III) ions which were obtained from spectrophotometric analysis of the solution after oxidation. $MnO_2$ was deposited on the electrode by electrochemical oxidation of Mn(II) at 1.8 and 1.9 V, while it was formed by disproportionation of Mn(III) at 2.0 V. No $PbO_2$ was formed in the presence of Mn(II) during potentiostatic oxidation treatment for two hours at 1.8 V. Chemical reduction of $PbO_2$ with Mn(II) led to a decrease in the amount of $PbO_2$ as Mn(II) concentration increased at 1.9 and 2.0 V.

Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance

  • Nam, Taehui;Son, Sunghoon;Kim, Eojn;Tran, Huong Viet Hoa;Koo, Bonyoung;Chai, Hyungwon;Kim, Junhyuk;Pandit, Soumya;Gurung, Anup;Oh, Sang-Eun;Kim, Eun Jung;Choi, Yonghoon;Jung, Sokhee P.
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Microbial fuel cell (MFC) is an innovative environmental and energy system that converts organic wastewater into electrical energy. For practical implementation of MFC as a wastewater treatment process, a number of limitations need to be overcome. Improving cathodic performance is one of major challenges, and introduction of a current collector can be an easy and practical solution. In this study, three types of current collectors made of stainless steel (SS) were tested in a single-chamber cubic MFC. The three current collectors had different contact areas to the cathode (P $1.0cm^2$; PC $4.3cm^2$; PM $6.5cm^2$) and increasing the contacting area enhanced the power and current generations and coulombic and energy recoveries by mainly decreasing cathodic charge transfer impedance. Application of the SS mesh to the cathode (PM) improved maximum power density, optimum current density and maximum current density by 8.8%, 3.6% and 6.7%, respectively, comparing with P of no SS mesh. The SS mesh decreased cathodic polarization resistance by up to 16%, and cathodic charge transfer impedance by up to 39%, possibly because the SS mesh enhanced electron transport and oxygen reduction reaction. However, application of the SS mesh had little effect on ohmic impedance.

Effect of Annealing Temperature on the Durability of PEMFC Polymer Membrane (PEMFC 고분자막의 어닐링 온도가 내구성에 미치는 영향)

  • Lee, Mihwa;Oh, Sohyeong;Park, Yujun;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.7-11
    • /
    • 2022
  • In the membrane forming process of a proton exchange membrane fuel cell (PEMFC), drying and annealing heat treatment processes are required for performance and durability. In this study, the optimal annealing temperature for improving the durability of the polymer membrane was studied. It was annealed in the temperature range of 125~175 ℃, and thermal stability and hydrogen permeability were measured as basic data of durability at each annealing temperature. The electrochemical durability was analyzed by Fenton reaction and open circuit voltage (OCV) holding. The annealing temperature of 165 ℃ was the optimal temperature in terms of thermal stability and hydrogen permeability. In the Fenton reaction, the fluorine emission rate of the membrane annealed at 165 ℃ was the lowest, and the lifespan of the membrane annealed at 165 ℃ was the longest in the OCV holding experiment, confirming that 165 ℃ was the optimal temperature for the durability of the polymer membrane.