• Title/Summary/Keyword: Electrochemical Processing

Search Result 133, Processing Time 0.029 seconds

A Study on the Electrochemical Behavior of Au and Pd in Hydrochloric Acidic Solution (염산 수용액 중에서 Au와 Pd의 전기화학적 거동에 관한 연구)

  • Yu, Yeon-Tae;Kim, Chi-Kwon
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.76-81
    • /
    • 2001
  • In order to recover Au and Pd from the leaching solution of various electronic wastes by electrowinning, the electrochemical behavior of Au and Pd in hydorchloric acidic solution was investigated by means of voltammetry. The reduction potential of Au ion was 800mV and the limiting current appeared at 470mV in electrolytic solution of gold. The reduction potential of Pd ion was 500mv and the limiting current appeared at 150mV in electrolytic solution of Palladium. However, in Au-Pd electrolytic solution, the Potentials for reduction and the limiting current of Au decreased as the content of Pd in electrolyte increased, and the potentials for the limiting current of Au and Pd closed nearest together when percentage of Pd electrolytic solution was 37v71% in Au-Pd electrolyte.

  • PDF

New High-Yield Method for the Production of Activated Carbon Via Hydrothermal Carbonization (HTC) Processing of Carbohydrates

  • Sharma, Sanjeev;Chun, Sang-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.387-393
    • /
    • 2019
  • Activated carbons (ACs) are considered important electrode materials for supercapacitors because their large specific surface areas lead to high charging capacities. In the conventional synthesis of ACs, a substantial amount of carbon is lost during carbonization of a precursor. The development of a method to synthesize ACs in high yield would lower their manufacturing cost. Here, we demonstrate the synthesis of high-specific-surface-area NaOH-AC from carbon prepared via a hydrothermal carbonization (HTC) route, with a higher yield than that achieved through conventional pyrolysis carbonization. The amorphous carbon was derived from HTC of sugar and subsequently activated at 800℃ with various NaOH etchant/C ratios under a N2 atmosphere. The AC prepared at 4:1 NaOH/C exhibited the highest surface area (as high as 2,918 ㎡ g-1) and the highest specific capacitance (157 F g-1 in 1 M aqueous Na2SO4 electrolyte solution) among the NaOH-AC samples prepared in this work. On the basis of their high specific capacitance, the NaOH-ACs prepared from HTC sugar are suitable for use as electrode materials for supercapacitors.

Properties of Sol-gel $WO_3$ thin films (졸겔 $WO_3$박막의 특성)

  • 이길동
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.61-66
    • /
    • 2001
  • $WO_3$ films were multicoated on the microscope slide glass and ITO-coated glass using a tungsten alkoxide type solution by the sol-gel deposition process. The effect of dipping and processing parameters on the structure, optical and electrochemical properties of the film were also investigated. Coating using alkoxide solution was very uniformed for low dipping speed of 0.005 m/s, but thickness variations across the sample became apparent for dipping speeds greater than 0.007 m/s. Electrochemical coloration experiments showed that films fired at lower temperatures color more easily than film fired to > $200^{\circ}C$. Rutherford backscattering spectroscopy studies revealed that $K^+$ ions were uniformly distributed throughout the $WO_3$layer in the colored sample.

  • PDF

Preparation and Characterization of Organic Thin-Film Transparent Electrode using Conducting Polyaniline (전도성 폴리아닐린을 이용한 유기박막 투명전극의 제조 및 특성)

  • Oh, Sun-Joo;Lee, Ue-Jin;Yoon, Jong-Jin;Jung, Myung-Jo;Lee, Suck-Hyun;Lee, Sang-Ho;Cha, E.H.;Lee, Jae-Kwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • The highly conductive polyaniline was synthesized and investigated on the properties of its thin film electrode fabricated by solution process. The transmittance and sheet resistance of the polyaniline thin film of 200 nm thickness were observed in 85% in absorption range above 450 nm and $380P{\Omega}/{\Box}$, respectively. The sheet resistance of the polyaniline was largely varied above $130^{\circ}C$ annealing temperature.

Semiconductor Behavior of Passive Films Formed on Cr with Various Additive Elements

  • Tsuchiya, Hiroaki;Fujimoto, Shinji;Shibata, Toshio
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Photoelectrochemical response and electrochemical impedance behavior was investigated for passive film formed on sputter-deposited Cr alloy in $0.1kmol{\cdot}m^{-3}$. Photoelectrochemical action spectrum could be separated into two components, which were considered to be derived from $Cr_2O_3$ ($E_g\sim3.6eV$) and $ Cr(OH)_3 $ ($E_g\sim2.5eV$). The band gap energy, $E_g$, of each component was almost constant for various applied potentials. polarization periods and alloying additives. The photoelectrochemical response showed negative photo current for most potentials in the passive region. Therefore, the photo current apparently exhibited p-typesemiconductor behavior. On the other hand, Mort-Schottky plot of the capacitance showed positive slope, which means that passive film formed on Cr alloy has n-type semiconductor property. These apparently conflicting results are rationally explained assuming that the passive film on Cr alloy formed in the acid solution has n-type semiconductor property with a fairly deep donor level in the band gap and forms an accumulation layer in the most of potential region in the passive state.

Self-Supported NiSe/Ni Foam: An Efficient 3D Electrode for High-Performance Supercapacitors

  • Zhang, Jingtong;Zhao, Fuzhen;Du, Kun;Zhou, Yan
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850136.1-1850136.12
    • /
    • 2018
  • Three-dimensional (3D) mixed phases NiSe nanoparticles growing on the nickel foam were synthesized via a simple one-step hydrothermal method. A series of experiments were carried out to control the morphology by adjusting the amount of selenium in the synthetic reaction. Meanwhile, the as-prepared novel column-acicular structure NiSe exist three advantages including ideal electrical conductivity, high specific capacity and high cycling stability. It delivered a high capacitance of $10.8F\;cm^{-2}$ at a current density- of $5mA\;cm^{-2}$. An electrochemical capacitor device operating at 1.6 V was then constructed using NiSe/NF and activated carbon (AC) as positive and negative electrodes. Moreover, the device showed high energy density of $31W\;h\;kg^{-1}$ at a power density of $0.81kW\;kg^{-1}$, as well as good cycling stability (77% retention after 1500 cycles).

The wastewater treatment system with high performance based on electrochemical interface reaction using dimensionally stable anode with simple manufacturing (전기화학 계면반응에 기초한 DSA 전극을 사용한 고성능 폐수처리 시스템)

  • Na, Young Soo;Lee, Man Sung;Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.101-105
    • /
    • 2018
  • With the rapidly growing of the population and industrization of cities, the clean and affordable water resources have gained immense interest because of remaining about 780 million people still lack access to it. However, present wastewater treatment systems have been faced with various issues, such as low processing efficiency, high operational costs and the requirement of a large area for manufacturing. It is therefore urgently required to develop an inexpensive and efficient wastewater treatment system. As the one of these efforts, we suggested and successfully demonstrated the wastewater treatment system using and electrochemical method via a dimensionally stable anode (DSA) based on rutile type $RuO_2$. Our system achieved biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiently at the respective rates of 52.0%, 77.8%, and 65.6% from household wastewater. In addition, we were able to remove BOD, COD, total nitrogen (TN), and total phosphorus (TP) from animal husbandry wastewater at rates of 92.9%, 75.6%, 35.1%, and 100%, respectively, thereby achieving dramatic reductions. Considering the excellent removal efficiency and the small size of this device, electrochemical wastewater treatment using a DSA coated in rutile $RuO_2$ presents a promising option for the treatment of both household and animal husbandry wastewater.

Fabrication of Porous Reticular Metal by Electrodeposition of Fe/Ni Alloy for Heat Dissipation Materials (Fe/Ni 합금전착에 의한 다공성 그물군조 방열재료의 제조 연구)

  • Lee, Hwa-Young;Lee, Kwan-Hyi;Jeung, Won-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.125-130
    • /
    • 2002
  • An attempt was made for the application of porous reticular metal to a heat dissipation material in semiconductor process. For this aim, the electrodeposition of Fe/Ni alloy on the porous reticular Cu has been performed to minimize the thermal expansion mismatch between Cu skeleton and electronic chip. Preliminary tests for the electrodeposition of Fe/Ni alloy layer were conducted by using standard Hull Cell to examine the effect of current density on the composition of alloy layer. It seemed that mass transfer affected significantly the composition of Fe/Ni layer due to anomalous codeposition in the electrodeposition of Fe/Ni alloy. A paddle type stirring bath, which was employed to control the mass transfer of electrolyte in the work, was found to allow the electrodeposition Fe/Ni with a precise composition. result showed that the thermal expansion of Fe/Ni alloy layer was much lower than that of pure copper. From the tests of heat dissipation by using the apparatus designed in the work the heat dissipation material fabricated in the work showed the excellent heat dissipation capacity, namely, more than two times as compared to that of pure copper plate.

Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review

  • Cao, Shiyu;Song, Shangbin;Xiang, Xing;Hu, Qing;Zhang, Chi;Xia, Ziwen;Xu, Yinghui;Zha, Wenping;Li, Junyang;Gonzale, Paulina Mercedes;Han, Young-Hwan;Chen, Fei
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.111-129
    • /
    • 2019
  • Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li7La3Zr2O12 (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

High Level Expression of a Protein Precursor for Functional Studies

  • Gathmann, Sven;Rupprecht, Eva;Schneider, Dirk
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.717-721
    • /
    • 2006
  • In vitro analyses of type I signal peptidase activities require protein precursors as substrates. Usually, these pre-proteins are expressed in vitro and cleavage of the signal sequence is followed by SDS polyacrylamide gel electrophoresis coupled with autoradiography. Radioactive amino acids have to be incorporated in the expressed protein, since the amount of the in vitro expressed protein is usually very low and processing of the signal peptide cannot be followed by SDS polyacrylamide gel electrophoresis alone. Here we describe a rapid and simple method to express large amounts of a protein precursor in E. coli. We have analyzed the effect of ionophors as well as of azide on the accumulation of expressed protein precursors. Azide blocks the function of SecA and the ionophors dissipate the electrochemical gradient across the cytoplasmic membrane of E. coli. Addition of azide ions resulted in the formation of inclusion bodies, highly enriched with pre-apo-plastocyanine. Plastocyanine is a soluble copper protein, which can be found in the periplasmic space of cyanobacteria as well as in the thylakoid lumen of cyanobacteria and chloroplasts, and the pre-protein contains a cleavable signal sequence at its N-terminus. After purification of cyanobacterial pre-apo-plastocyanine, its signal sequence can be cleaved off by the E. coli signal peptidase, and protein processing was followed on Coomassie stained SDS polyacrylamide gels. We are optimistic that the presented method can be further developed and applied.