• 제목/요약/키워드: Electrochemical Performance

검색결과 1,547건 처리시간 0.032초

CNT를 이용한 Supercapacitor의 충.방전 특성 (The Effect of CNT Electrode on the Charging and Discharging Characteristics of Supercapacitor)

  • 허근;명성재;이용현;전명표;조정호;김병익;심광보
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.275-275
    • /
    • 2007
  • Two sorts of electrode composed of Sulpur/CNT/PVDF and Silver/CNT/PVDF were prepared by in situ chemical method and their electrochemical performance were evaluated by using cyclic voltammetry, impedance measurement and constant-current charge/discharge cycling technique. Also, composite electrodes were characterized by FE-SEM and BET. Raw materials such as CNT/Silver and CNT/Sulfur were mixed in ethanol, dried. These mixed materials were heated at 900 and $320^{\circ}C$ for 2hr, respectively in order to enhance contact among CNT electrodes. Electric double layer capacitor cells were fabricated using these mixed powder with polymer of PVDF. For the charging and discharging characteristics measured at scan rate of 1 mA/s, Supercapacitor of Sulphur-CNT-PVDF electrode showed a better performance than that of Ag-CNT-PVDF, which seems to be related with lower contact resistance of Sulphur-CNT-PVDF electrode.

  • PDF

기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향 (The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery)

  • 김종헌;소승범;고광모;이경진;김현석
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.437-443
    • /
    • 2019
  • All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

복합막 기반의 미생물 연료전지 연구에 대한 총설 (Recent Advance in Microbial Fuel Cell based on Composite Membranes)

  • 김세민;라즈쿠마 파텔;김종학
    • 멤브레인
    • /
    • 제31권2호
    • /
    • pp.120-132
    • /
    • 2021
  • 미생물 연료전지(MFC)는 미생물의 촉매 반응을 이용하여 폐수 등 환경 오염물질을 처리함과 동시에 전기에너지를 생성하는 생물전기화학 장치다. 미생물 연료전지의 주요 성분 중 하나인 양이온 교환막(PEM)은 미생물 연료 전지의 성능에 결정적인 영향을 미치며, 현재 가장 많이 사용되고 있는 양성자교환막은 Nafion이다. Nafion은 우수한 성능을 가지고 있지만, 단가가 높고, 생물오염에 취약하며, 생분해가 불가능하다는 단점이 있다. 따라서 Nafion을 대체하기 위한 새로운 복합막을 개발하고자 하는 시도가 꾸준히 이루어졌다. 본 총설에서는 미생물 연료전지 분야에서 최근 개발된 복합막의 특징과 성능을 고찰하며, 특히 양성자교환막을 중점적으로 다룬다.

다공성 탄소층이 코팅된 하이브리드 표면 구조를 갖는 산소 환원 반응용 PtCo 합금 나노 촉매 (Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions)

  • 장정희;모니카 샤르마;성후광;김순표;정남기
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.646-652
    • /
    • 2018
  • During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, $O_2$ can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.

Electrocatalytic properties of Te incorporated Ni(OH)2 microcrystals grown on Ni foam

  • Lee, Jung-Il;Oh, Seong Gyun;Kim, Yun Jeong;Park, Seong Ju;Sin, Gyoung Seon;Kim, Ji Hyeon;Ryu, Jeong Ho
    • 한국결정성장학회지
    • /
    • 제31권2호
    • /
    • pp.96-101
    • /
    • 2021
  • Developing effective and earth-abundant electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is critical for the commercialization of a water splitting system. In particular, the overpotential of the OER is relatively higher than the HER, and thus, it is considered that one of the important methods to enhance the performance of the electrocatalyst is to reduce the overpotential of the OER. We report effects of incorporation of metalloid into Ni(OH)2 microcrystal on electrocatalytic activities. In this study, Te incorporated Ni(OH)2 (��Te-Ni(OH)2) were grown on three-dimensional porous NF by a facile solvothermal method with �� = 1, 3 and 5. Homogeneous microplate structure on the NF was clearly observed for the Ni(OH)2/NF and ��Te-Ni(OH)2/NF samples. However, irregular and collapsed nanostructures were found on the surface of nickel foam when Te precursor ratio is (��) over 3. Electrocatalytic OER properties were analysed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Te incorporation used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Te amount (��) introduced into the Ni(OH)2/NF was discussed with respect to their OER performance.

재활용 황산니켈의 국내·외 품질기준현황 및 생산제품의 전해도금 성능 비교 (The Status of Domestic and International Quality Standards for Recycled Nickel Sulfate and Comparison of Electroplating Performance Between Reagent and Recycled Products)

  • 박성철;김용환;신호정;이만승;손성호
    • 자원리싸이클링
    • /
    • 제30권3호
    • /
    • pp.55-62
    • /
    • 2021
  • 국내에서는 1997년 우수 재활용제품(good recycled product, GR) 인증 제도를 도입하여 자원과 에너지 사용효율 개선을 증진하고 있으나 산업계 및 사회 전반적으로 재활용 소재에 대한 인식 부족으로 인해 재활용 제품 사용이 잘되지 않고 있다. 따라서 본 연구에서는 니켈 소재의 국내·외 품질 기준 현황을 조사하였고, 광석으로부터 제조된 황산니켈과 폐리튬이온전지로부터 재소재화 된 황산니켈에 대하여 전해도금 공정에서의 순도 및 전기화학적 특성을 평가하였다. 평가 결과, 전해도금 산업에서 사용 시 재활용 황산니켈과 고순도 황산니켈 시약의 품질은 차이가 없는 것으로 판단된다.

리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구 (Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation)

  • 윤현기;하상현;이재인
    • 전력전자학회논문지
    • /
    • 제26권6호
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

폐리튬이차전지 스크랩 재활용을 통한 양극활물질 전구체 합성 연구 (A study on the synthesis of a cathode active material precursor from a waste lithium secondary battery)

  • 김보람;김대원;김태헌;이재원;정항철;한덕현;정수훈;양대훈
    • 한국결정성장학회지
    • /
    • 제32권2호
    • /
    • pp.61-67
    • /
    • 2022
  • 폐리튬이차전지 스크랩으로부터 회수한 유가금속인 니켈, 코발트, 망간을 정제하여 제조한 리튬이차전지 전구체 금속염 용액으로 테일러반응을 통해 NCM 811 전구체를 제조하였다. 반응 시간에 따른 전구체 형태 변화를 SEM, PSA, ICP 분석 결과를 기반으로 합성 조건을 확립하였다. 이에 상업용 전구체와 재활용하여 합성한 전구체의 전기 화학적 특성인 충·방전 특성, 율특성, 수명특성 등을 평가하여 비교 연구하였으며, 상업용 전구체와 비교 시 큰 차이가 없거나 일부 특성에서는 우수한 특성을 확인할 수 있었다.

비정질 V2O5 중간층 삽입을 통한 고성능 LNMO기반 박막 배터리 개발 (Development of High-Performance LNMO Based Thin-Film Battery through Amorphous V2O5 Interlayer Insertion)

  • 권오혁;김종헌;박준섭;김현석
    • 한국전기전자재료학회논문지
    • /
    • 제35권2호
    • /
    • pp.194-198
    • /
    • 2022
  • All-solid-state thin-film battery can realize the integration of electronic circuits into small devices. However, a high voltage cathode material is required to compensate for the low energy density. Therefore, it is necessary to study all-solid-state thin-film battery based on the high voltage cathode material LNMO. Nevertheless, the electrochemical properties deteriorate due to the problem of the interface between LiNi0.5Mn1.5O4 (LNMO) and the solid electrolyte LiPON. In this study, to solve this problem, amorphous V2O5 was deposited as an interlayer between LNMO and LiPON. We confirmed the possibility of improving cycle performance of LNMO based thin-film battery. We expect that the results of this study can extend the battery lifespan of small devices using LNMO based all-solid-state thin-film battery.

Strategies to Design Efficient Donor-Acceptor (D-A) Type Emitting Molecules: Molecular Symmetry and Electron Accepting Ability of D-A Type Molecules

  • Hyun Gi Kim;Young-Seok Baek;Sung Soo Kim;Sang Hyun Paek;Young Chul Kim
    • 공업화학
    • /
    • 제34권6호
    • /
    • pp.633-639
    • /
    • 2023
  • We synthesized 2-(10-methyl-10H-phenothiazin-3-yl)-5-phenyl-1,3,4-oxadiazole (MPPO) and 5,5-(10-methyl-10H-phenothiazin-3,7-diyl)-bis-(2-phenyl-1,3,4-oxadiazole) (DPPO). MPPO has both electron-donating and electron-accepting substituents with asymmetric molecular geometry. By incorporating one extra electron-accepting group into MPPO, we created a symmetric molecule, which is DPPO. The optical and electrochemical properties of these compounds were measured. The lowest unoccupied molecular orbital (LUMO) level of DPPO was lower than that of MPPO. The excited-state dipole moment of DPPO, with symmetric geometry, was calculated to be 4.1 Debye, whereas MPPO, with asymmetric geometry, had a value of 7.0 Debye. The charge-carrier mobility of both compounds was similar. We fabricated non-doped organic light-emitting diodes (OLEDs) using D-A type molecules as an emitting layer. The current efficiency of the DPPO-based device was 7.8 cd/A, and the external quantum efficiency was 2.4% at 100 cd/m2, demonstrating significantly improved performance compared to the MPPO-based device. The photophysical and electroluminescence (EL) characteristics of the two D-A type molecules showed that molecular symmetry, as well as the lowered LUMO level of DPPO, played critical roles in the enhancement of EL performance.