• 제목/요약/키워드: Electrochemical Deburring

검색결과 7건 처리시간 0.022초

입방정질화붕소입자 전착지석에 의한 전해디버링 시스템 (Electrochemical Deburring System by the Electroplated CBN Wheel)

  • 최인휴
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.430-438
    • /
    • 1997
  • Deburring and edge finishing technology as the final process of machining operation is required for manufacturing of advanced precise conponents. But, deburring is considered as a difficult problem on going to the high efficient production and automation in the FMS. Removal of burr couldn't have a standard of its definition because of its various shapes, dimensions and properties and mostly depends on manual treatment. Especially, deburring for cross hole inside is very difficult owing to its shape passing through out perpendicular to a main hole. The electrochemical method is suggested as its solution in practical aspect. Therefore, electrochemical deburring technology needs to be developed for the high efficiency and automation of internal deburring in the cross hole. In this study, the new process in the eliminating burr inside cross hole, electrochemical deburring by the wheel electroplated with Cubic-Boron-Nitrade abrasives, is suggested. Its deburring mechanism is described and machining performances is investigated. Also, CBN electroplated wheel is designed and manufactured and then characteristics of electrochemical deburring are investigated through experiments. Overall electrochemical deburring performance against burr inside cross hole is examined in the various power sources such as peak current and direct current.

거버너샤프트 교차구멍 내경의 전해디버링 특성에 관한 연구 (A study on the characteristics of electrochemical deburring in the governor shaft cross hole)

  • 최인휴;김정두
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.1984-1991
    • /
    • 1997
  • Recently burr technology is rising in the fields of the precision manufacturing and the high quality machining, deburring has treated as a difficult problem on going to the high efficiency, automation in the FMS. Removal of burr with various shapes, dimensions and properties couldn't be standardized and has depended on manual treatment. Especially, deburring for cross hole inside owing to passing through out perpendicular to a main hole is more difficult, the electrochemical method is proper as its solution at practical aspects. Burr elimination in the cross hole drilling of governor shaft used in the automobile engine so far has been worked by a manual post-processing by a skillful worker, which becomes a factor of productivity-down and cost-up so that improvement of machining process is needed. Therefore, for the high efficiency and automation of internal deburring in the cross hole, development of electrochemical deburring technology is needed. So, the new process in the burr treatment is supposed. In this study, characteristics of electrochemical deburring through experiments were identified and factors such as electrolytic gap and electorlytic fluid contributed to removal burr height were analyzed. Also, deburring efficiency and electrolytic performance for cross hole were examined according to electrolytic current and electrochemical deburring condition corresponding to acquired edge quality was found out.

입방정질화붕소입자 전착지석에 의한 전해디버링 시스템 (Electrochemical Deburring System by the Electroplated CBN Wheel)

  • 최인규;김정두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.19-23
    • /
    • 1996
  • Deburring and edge finishing technology as the last process of machining operation is required for manufacturing of advanced procesion components, duburring has treated as a difficult problem on going tothe highefficency, automation in the FMS. Removal of butt with various shapes, dimensions and properties coultn't has a standard and has depended on manual treatment. Especially, deburring for cross hole inside owing to passing through out perpendicular to a main hole is more difficult, the electrolytic method is proper as its solution at practical aspects. Therefore, for the high effciency and automation of intermal deburring in the cross hole, development of electrolytic debutting technology is needed. So, the new process in the burr treatment is supposed. In this study, in the eliminating burr inside cross hole, the principle and machining performances of electrochemical deburring by Cubic-Boron-Nitrade abrasive electroplate wheel are investigated, Design and manufacture of CBN electroplated wheel and analysis of characteristics with electrolytic debutting are achieved. Also deburring efficiency and electrolytic performance for cross hole were examined according to electrolytic current and electrolytic deburring condition corresponding to acquired edge quality was found out.

  • PDF

니티놀 형상기억합금의 표면 거칠기 향상 및 미세 버 제거를 위한 마이크로 전해연마의 가공특성 분석 (A Study for Improving Surface Roughness and Micro-deburring Effect of Nitinol Shape Memory Alloy by Electropolishing)

  • 신민정;백승엽;이은상
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.49-54
    • /
    • 2007
  • Electropolishing, the anodic dissolution process without contact with tools, is a surface treatment method to make a surface planarization using an electrochemical reaction with low current density. Nitinol is a metal alloy composed of Ni and Ti around 50% respectively which has shape memory effect. Nitinol can be put various applications which require purity and high pricision surface of products. The aim of this study is to investigate the characteristic of electropolishing effect for nitinol workpieces. In order to analyze the characteristics of electropolishing effect, surface roughness and micro-burr size were measured in terms of machining conditions such as current density, machining time and electrode gap. The tendencies about improvement of surface roughness and deburring effect by electropolishing for nitinol workpieces were determined.

Nitinol 소재의 미세 전해디버링에 관한 연구 (A Study of Micro Electrolytic-deburring for Nitinol)

  • 김원묵;신민정;이은상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.229-230
    • /
    • 2006
  • Shape memory alloy, Nitinol is used for medical stent, artificial human joint, antenna of artificial satellite, fire door, temperature sensor...etc. It is important for some nitinol product high precision and clean surface. In this study, we experiment about deburring of edge and surface of nitinol work piece with micro electrolytic-deburring. We made an observation in case electric currents are $1A{\sim}4A$, above 5A and each machining times.

  • PDF

전해연마를 적용한 미세 마이크로 니들의 표면 향상에 대한 연구 (A study on the Surface Improvement of Fine-Micro Needles Applying Electrochemical Polishing)

  • 정성택;김현정;위은찬;공정식;백승엽
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.48-52
    • /
    • 2019
  • As the consumer market in the mold, automation and aerospace industries grows, the demand for chemical machining using on electrochemical polishing increases. To enhance the surface roughness and gloss of the micro-needle, we have studied for an electrochemical polishing. Electrochemical polishing requires the chemical reaction of solution and material according to the electrolyte and electrode. In this study, sulfuric acid(30%), phosphoric acid(50%), and DI-water(20%)were used as the electrolytic solution, and the electrolytic solution temperature used $58^{\circ}C$. Electrochemical polishing was carried out in experimental conditions, and the micro-needle experiment was carried out from the basic experiment to obtain the experimental conditions. Experimental results show that as the voltage and current increase, the surface roughness improved and the gloss is improved. So, the best result for this experiment was obtained in condition 6, which improved micro-needle.

미세 홈 형성을 위한 마이크로 가공기술에 관한 연구 (A Study on the Micro-machining Technique for Fabrication of Micro Grooves)

  • 박정우;이은상;문영훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.918-921
    • /
    • 2000
  • Micro-machining, one of the non-traditional machining techniques, can achieve a wanted shape of the surface using metal dissolution with electrochemical reaction and can be applied to the metal such as high tension, heat resistance and hardened steel. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and the current is applied. Traditional machining has been used in the industries such as cutting, deburring, drilling and shaping. The aim of this work is to develop Micro-machining techniques for micro shape by establishing appropriate machining parameters of micro-machining

  • PDF