• 제목/요약/키워드: Electroceramic materials

검색결과 4건 처리시간 0.018초

Smart Solid State Syntheses of Well-Crystallized Phase Pure Mixed Oxides for Electroceramics

  • Sennat, Mamoru
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.680-687
    • /
    • 2006
  • An overview is given to optimize the solid state processes toward phase pure and well-crystallized fine particulates of mixed oxides, serving as electroceramic materials in various genres. Elevation of the reactivity and preservation of stoichiometry of the starting mixture are of universal importance. Mechanical activation is versatile for these purposes, particularly when an oxygen atom as a hinge promotes formation of hetero-bridging bonds between dissimilar cationic species prior to calcination. Case studies carried out recently in the author's laboratory are displayed and compared for ferroelectric materials, i.e. $PbMg_{1/3}Nb_{2/3}O_3$ $xPbTiO_3$(PMN-PT), $(1-y)Pb(Zn_xMg{1-x})_{1/3}$ $yNb_{2/3}O_3$ (PZN-PMN), $BaBi_2Ta_2O_9$ (BBT), $Ba(Mg_{1/3}Ta_{2/3})O_3$ (BMT), and ferromagnetics, i.e. M-, Y-, and Z-phases of Ba-hexaferrites.

Structural, FTIR and ac conductivity studies of NaMeO3 (Me ≡ Nb, Ta) ceramics

  • Roy, Sumit K.;Singh, S.N.;Kumar, K.;Prasad, K.
    • Advances in materials Research
    • /
    • 제2권3호
    • /
    • pp.173-180
    • /
    • 2013
  • Lead-free complex perovskite ceramics $NaMeO_3$ ($Me{\equiv}Nb$, Ta) were synthesized using conventional solid state reaction technique and characterized by structural, FTIR and electrical (dielectric and ac conductivity) studies. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of single-phase orthorhombic structure with the space group Pmmm (47). Dielectric studies showed the diffuse phase transition at $394^{\circ}C$ for $NaNbO_3$ and $430^{\circ}C$ for $NaTaO_3$. Ac conductivity in both the compounds follows Jonscher's power law.

Effect of milling on the electrical properties of Ba(Fe1/2Ta1/2)O3 ceramic

  • Mahto, Uttam K.;Roy, Sumit K.;Chaudhuri, S.;Prasad, K.
    • Advances in materials Research
    • /
    • 제5권3호
    • /
    • pp.181-192
    • /
    • 2016
  • In this work effect of high energy milling on the structural and electrical properties of $Ba(Fe_{1/2}Ta_{1/2})O_3$ (BFT) ceramic synthesized using standard solid-state reaction method were investigated. X-ray diffraction studies indicated that the unit cell structure for all the samples to be hexagonal (space group: P3m1). FTIR spectra also confirmed the formation of BFT without any new phase. The milled (10 h) BFT ceramic showed the formation of small grain sizes (<$2{\mu}m$) which is beneficial for dielectric applications in high density integrated devices. Besides, the milled (10 h) BFT ceramic sample exhibited superior dielectric properties (enhancement in ${\varepsilon}^{\prime}-value$ and reduction in $tg{\delta}-value$) compared to un-milled one. Impedance analysis indicated the negative temperature coefficient of resistance (NTCR) character. The correlated barrier hopping model (jump relaxation type) is found to successfully explain the mechanism of charge transport in present ceramic samples.

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF