• Title/Summary/Keyword: Electrocardiogram Signals

Search Result 158, Processing Time 0.025 seconds

Characteristics of Heart Rate Variability Derived from ECG during the Driver's Wake and Sleep States (운전자 졸음 및 각성 상태 시 ECG신호 처리를 통한 심장박동 신호 특성)

  • Kim, Min Soo;Kim, Yoon Nyun;Heo, Yun Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.136-142
    • /
    • 2014
  • Distinct features in heart rate signals during the driver's wake and sleep states could provide an initiative for the development of a safe driving systems such as drowsiness detecting sensor in a smart wheel. We measured ECG from health subjects ($23.5{\pm}2.5$ in age) during the wake and drowsiness states. The proposed method is able to detect R waves and R-R interval calculation in the ECG even when the signal includes in abnormal signals. Heart rate variability(HRV) was investigated for the time domain and frequency domains. The STD HR(0.029), NN50(0.044) and VLF power(0.0018) of the RR interval series of the subjects were significantly different from those of the control group (p < 0.05). In conclusion, there are changes in heart rate from wake to drowsiness that are potentially to be detected. The results in our study could be useful for the development of drowsiness detection sensors for effective real-time monitoring.

Development of Mobile Healthcare System Using ECG Measurement (심전도 측정을 이용한 모바일 헬스케어 시스템 개발)

  • Kim, Seong-Woo;Shin, Seung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2008-2016
    • /
    • 2014
  • With the increased attention about health care and management of heart diseases, ubiquitous healthcare services and related devices have been actively developed recently. In this paper we developed a mobile healthcare system which consists of smartphone and patch-type ECG measuring device. This system is capable of monitoring, storing, and sending bio signals such as ECG, heart rate, heart rate variability as well as exercise management functions through heart rate zones. With monitoring bio signal continuously by mobile healthcare system and wearable device like us, people can prevent chronic disease and maintain good health. Here we report our implementation results on real platforms.

Acquisition of Multi-channel Biomedical Signals Based on Internet of Things (사물인터넷 기반의 다중채널 생체신호 측정)

  • Kim, Jeong-Hwan;Jeung, Gyeo-Wun;Lee, Jun-Woo;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1252-1256
    • /
    • 2016
  • Internet of Things(IoT)-devices are now expanding inter-connecting networking technologies to invent healthcare monitoring system especially for assessing physiological conditions of the chronically-ill patients those with cardiovascular diseases. Hence, IoT system is expected to be utilized for home healthcare by dedicating the original usage of IoT devices to collect the biomedical data such as electrocardiogram(ECG) and photoplethysmography(PPG) signal. The aim of this work is to implement health monitoring system by integrating IoT devices with Raspberry-pi components to measure and analyze ECG and the multi-channel PPG signals. The acquired data and fiducial features from our system can be transmitted to mobile devices via wireless networking technology to support the concept of tele-monitoring services based on IoT devices.

A Portable IoT-cloud ECG Monitoring System for Healthcare

  • Qtaish, Amjad;Al-Shrouf, Anwar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.269-275
    • /
    • 2022
  • Public healthcare has recently become an issue of great importance due to the exponential growth in the human population, the increase in medical expenses, and the COVID-19 pandemic. Speed is one of the crucial factors in saving life, particularly in case of heart attack. Therefore, a healthcare device is needed to continuously monitor and follow up heart health conditions remotely without the need for the patient to attend a medical center. Therefore, this paper proposes a portable electrocardiogram (ECG) monitoring system to improve healthcare for heart attack patients in both home and ambulance settings. The proposed system receives the ECG signals of the patient and sends the ECG values to a MySQL database on the IoT-cloud via Wi-Fi. The signals are displayed as an ECG data chart on a webpage that can be accessed by the patient's doctor based on the HTTP protocol that is employed in the IoT-cloud. The proposed system detects the ECG data of the patient to calculate the total number of heartbeats, number of normal heartbeats, and the number of abnormal heartbeats, which can help the doctor to evaluate the health status of the patient and decide on a suitable medical intervention. This system therefore has the potential to save time and life, but also cost. This paper highlights the five main advantages of the proposed ECG monitoring system and makes some recommendations to develop the system further.

Effective Methods for Heart Disease Detection via ECG Analyses

  • Yavorsky, Andrii;Panchenko, Taras
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.127-134
    • /
    • 2022
  • Generally developed for medical testing, electrocardiogram (ECG) recordings seizure the cardiac electrical signals from the surface of the body. ECG study can consequently be a vital first step to support analyze, comprehend, and expect cardiac ailments accountable for 31% of deaths globally. Different tools are used to analyze ECG signals based on computational methods, and explicitly machine learning method. In all abovementioned computational simulations are prevailing tools for cataloging and clustering. This review demonstrates the different effective methods for heart disease based on computational methods for ECG analysis. The accuracy in machine learning and three-dimensional computer simulations, among medical inferences and contributions to medical developments. In the first part the classification and the methods developed to get data and cataloging between standard and abnormal cardiac activity. The second part emphases on patient analysis from entire ECG recordings due to different kind of diseases present. The last part represents the application of wearable devices and interpretation of computer simulated results. Conclusively, the discussion part plans the challenges of ECG investigation and offers a serious valuation of the approaches offered. Different approaches described in this review are a sturdy asset for medicinal encounters and their transformation to the medical world can lead to auspicious developments.

A Combined QRS-complex and P-wave Detection in ECG Signal for Ubiquitous Healthcare System

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.98-103
    • /
    • 2007
  • Long term Electrocardiogram (ECG) [1] analysis plays a key role in heart disease analysis. A combined detection of QRS-complex and P-wave in ECG signal for ubiquitous healthcare system was designed and implemented which can be used as an advanced warning device. The ECG features are used to detect life-threating arrhythmias, with an emphasis on the software for analyzing QRS complex and P-wave in wireless ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server will transfer alarm conditions to a doctor's Personal Digital Assistant (PDA). Doctor can diagnose the patients who have survived from cardiac arrhythmia diseases.

The Physiological Response on Wear Comfort of Polyethylene Terephthalate Irradiated by Ultra-violet

  • Choi, Hae-Young;Lee, Jung-Soon
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.446-449
    • /
    • 2006
  • The purpose of this study was to evaluate the comfort of PET clothing treated by UV. The physiological responses of the human body were investigated. Mean skin temperature and physiological signals such as Electroencephalogram (EEG), and heart rate (Electrocardiogram, (ECG)) were examined for 20 minutes during stable wearing conditions. Mean skin temperature was measured every two seconds using Ramanathan's method. Physiological responses were measured using Biopac MP100 series and analyzed using the software, Acqknowledge 3.5.2. Psychological effects were analyzed every five minutes. Comfort of untreated PET clothing decreased with the passage of time. Compared with PET clothing untreated, treated for 30 minutes, and treated for 90 minutes, the analysis of EEG showed that PET clothing treated for 90 minutes was the most comfortable after 20 minutes. In addition, the interval of the heart rate shown on the ECG was the highest in PET clothing treated for 90 minutes. Skin temperature was the lowest in PET treated for 90 minutes. We thus conclude that suitable UV irradiation would improve comfort.

Encryptions of ECG Signals by Using Fiducial Features (심전도 신호의 특징 값을 이용한 암호화)

  • Kim, Jeong-Hwan;Kim, Kyeong-Seop;Shin, Seung-Won;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2380-2385
    • /
    • 2011
  • With the advent of ubiquitous healthcare technology to provide a patient with the necessary medical services in anywhere and anytime scheme, the importance of securing safe communication without tampering the medical data by the unauthorized users is getting more emphasized. With this aim, a novel method for constructing encryption keys on the basis of biometrical measurement of electrocardiogram (ECG) is suggested in this study. The experiments on MIT/BIH database show that our proposed method can achieve safe communication by successfully ciphering and deciphering ECG data including premature ventricular contraction arrhythmia signal with compromising its fiducial features as biometric key to transmit the data via the internet network.

Real-time Biomedical Signal Visualization by ActiveX Modulation (ActiveX 모듈화를 통한 생체신호 실시간 가시화)

  • Yoon, Tae-Ho;Kim, Kyeong-Seop;Shin, Seung-Won;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1144-1150
    • /
    • 2007
  • In this study, a hardware-independent software scheme is proposed to visualize biomedical signals such as an electrocardiogram(ECG) and their relevant diagnostic features in a real-time mode. To minimize the dependency on a specific hardware units and to maximize software portability into the different hardware platforms, objected-oriented visualization codes are implemented by Visual C++ MFC(Microsoft Fundamental Classes) with the integration of ActiveX modules.

Design of A Downlink Power Control Scheme in Unequal Error Protection Multi-Code CDMA Mobile Medicine System

  • Lin, Chin-Feng;Lee, Hsin-Wang;Hung, Shih-Ii;Li, Ching-Yi
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.335-338
    • /
    • 2005
  • In this paper, we propose a downlink power control scheme to apply in the unequal error protection multi-code CDMA mobile medicine system. The mobile medicine system contains (i) blood pressure and body temperature measurement value, (ii) ECG medical signals measured by the electrocardiogram device, (iii) mobile patient's history, (iv) G.729 audio signal, MPEG-4 CCD sensor video signal, and JPEG2000 medical image. By the help of the multi-code CDMA spread spectrum communication system with downlink power control scheme and unequal error protection strategy, it is possible to transmit mobile medicine media and meet the quality of service. Numerical analysis and simulation results show that the system is a well transmission platform in mobile medicine.

  • PDF