• Title/Summary/Keyword: Electrocardiogram(ECG) classification

Search Result 46, Processing Time 0.025 seconds

Classification of Three Different Emotion by Physiological Parameters

  • Jang, Eun-Hye;Park, Byoung-Jun;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.271-279
    • /
    • 2012
  • Objective: This study classified three different emotional states(boredom, pain, and surprise) using physiological signals. Background: Emotion recognition studies have tried to recognize human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 122 college students participated in this experiment. Three different emotional stimuli were presented to participants and physiological signals, i.e., EDA(Electrodermal Activity), SKT(Skin Temperature), PPG(Photoplethysmogram), and ECG (Electrocardiogram) were measured for 1 minute as baseline and for 1~1.5 minutes during emotional state. The obtained signals were analyzed for 30 seconds from the baseline and the emotional state and 27 features were extracted from these signals. Statistical analysis for emotion classification were done by DFA(discriminant function analysis) (SPSS 15.0) by using the difference values subtracting baseline values from the emotional state. Results: The result showed that physiological responses during emotional states were significantly differed as compared to during baseline. Also, an accuracy rate of emotion classification was 84.7%. Conclusion: Our study have identified that emotions were classified by various physiological signals. However, future study is needed to obtain additional signals from other modalities such as facial expression, face temperature, or voice to improve classification rate and to examine the stability and reliability of this result compare with accuracy of emotion classification using other algorithms. Application: This could help emotion recognition studies lead to better chance to recognize various human emotions by using physiological signals as well as is able to be applied on human-computer interaction system for emotion recognition. Also, it can be useful in developing an emotion theory, or profiling emotion-specific physiological responses as well as establishing the basis for emotion recognition system in human-computer interaction.

Detection of QRS Feature Based on Phase Transition Tracking for Premature Ventricular Contraction Classification (조기심실수축 분류를 위한 위상 변이 추적 기반의 QRS 특징점 검출)

  • Cho, Ik-sung;Yoon, Jeong-oh;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.427-436
    • /
    • 2016
  • In general, QRS duration represent a distance of Q start and S end point. However, since criteria of QRS duration are vague and Q, S point is not detected accurately, arrhythmia classification performance can be reduced. In this paper, we propose extraction of Q, S start and end point RS feature based on phase transition tracking method after we detected R wave that is large peak of electrocardiogram(ECG) signal. For this purpose, we detected R wave, from noise-free ECG signal through the preprocessing method. Also, we classified QRS pattern through differentiation value of ECG signal and extracted Q, S start and end point by tracking direction and count of phase based on R wave. The performance of R wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 99.60%. PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction(PVC). The achieved scores indicate the average detection rate of 94.12% in PVC.

Classification of ECG arrhythmia using Discrete Cosine Transform, Discrete Wavelet Transform and Neural Network (DCT, DWT와 신경망을 이용한 심전도 부정맥 분류)

  • Yoon, Seok-Joo;Kim, Gwang-Jun;Jang, Chang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.727-732
    • /
    • 2012
  • This paper presents an approach to classify normal and arrhythmia from the MIT-BIH Arrhythmia Database using Discrete Cosine Transform(DCT), Discrete Wavelet Transform(DWT) and neural network. In the first step, Discrete Cosine Transform is used to obtain the representative 15 coefficients for input features of neural network. In the second step, Discrete Wavelet Transform are used to extract maximum value, minimum value, mean value, variance, and standard deviation of detail coefficients. Neural network classifies normal and arrhythmia beats using 55 numbers of input features, and then the accuracy rate is 98.8%.

Research on the modified algorithm for improving accuracy of Random Forest classifier which identifies automatically arrhythmia (부정맥 증상을 자동으로 판별하는 Random Forest 분류기의 정확도 향상을 위한 수정 알고리즘에 대한 연구)

  • Lee, Hyun-Ju;Shin, Dong-Kyoo;Park, Hee-Won;Kim, Soo-Han;Shin, Dong-Il
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.341-348
    • /
    • 2011
  • ECG(Electrocardiogram), a field of Bio-signal, is generally experimented with classification algorithms most of which are SVM(Support Vector Machine), MLP(Multilayer Perceptron). But this study modified the Random Forest Algorithm along the basis of signal characteristics and comparatively analyzed the accuracies of modified algorithm with those of SVM and MLP to prove the ability of modified algorithm. The R-R interval extracted from ECG is used in this study and the results of established researches which experimented co-equal data are also comparatively analyzed. As a result, modified RF Classifier showed better consequences than SVM classifier, MLP classifier and other researches' results in accuracy category. The Band-pass filter is used to extract R-R interval in pre-processing stage. However, the Wavelet transform, median filter, and finite impulse response filter in addition to Band-pass filter are often used in experiment of ECG. After this study, selection of the filters efficiently deleting the baseline wandering in pre-processing stage and study of the methods correctly extracting the R-R interval are needed.

Engagement classification algorithm based on ECG(electrocardiogram) response in competition and cooperation games (심전도 반응 기반 경쟁, 협동 게임 참여자의 몰입 판단 알고리즘 개발)

  • Lee, Jung-Nyun;Whang, Min-Cheol;Park, Sang-In;Hwang, Sung-Teac
    • Journal of Korea Game Society
    • /
    • v.17 no.2
    • /
    • pp.17-26
    • /
    • 2017
  • Excessive use of the internet and smart phones have become a social issue. The level of engagement has both positive and negative effects such as good performance or indulgence phenomenon, respectively. This study was to develop an algorithm to determine the engagement state based on cardiovascular response. The participants were asked to play a pattern matching game and the experimental design was divided into cooperation and competition task to provide the level of engagement. The correlation between heart rate and amplitude was analyzed according to each task. The regression equation and accuracy were verified by polynomial regression analysis. The results showed that heart rate and amplitude were positively correlated when the task was a game, and negatively correlated when there was a reference task. The accuracy of classifying between game and reference task was 89%. The accuracy between tasks was confirmed to be 76.5%. This study is expected to be used to quantitatively evaluate the level of engagement in real time.

Implementation of Acceleration Sensor-based Human activity and Fall Classification Algorithm (가속도 센서기반의 인체활동 및 낙상 분류를 위한 알고리즘 구현)

  • Hyun Park;Jun-Mo Park;Yeon-Chul, Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • With the recent development of IT technology, research and interest in various biosignal measuring devices is increasing. As an aging society is in full swing, research on the elderly population using IT-related technologies is continuously developing. This study is about the development of life pattern detection and fall detection algorithm, which is one of the medical service areas for the elderly, who are rapidly developing as they enter a super-aged society. This study consisted of a system using a 3-axis accelerometer and an electrocardiogram sensor, collected data, and then analyzed the data. It was confirmed that behavioral patterns could be classified from the actual research results. In order to evaluate the usefulness of the human activity monitoring system implemented in this study, experiments were performed under various conditions, such as changes in posture and walking speed, and signal magnitude range and signal vector magnitude parameters reflecting the acceleration of gravity of the human body and the degree of human activity. was extracted. And the possibility of discrimination according to the condition of the subject was examined by these parameter values.