Bashir, Mohamed Ezzeldin A.;Shon, Ho Sun;Lee, Dong Gyu;Kim, Hyeongsoo;Ryu, Keun Ho
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권1호
/
pp.99-118
/
2013
Electrocardiograms (ECGs) are widely used by clinicians to identify the functional status of the heart. Thus, there is considerable interest in automated systems for real-time monitoring of arrhythmia. However, intra- and inter-patient variability as well as the computational limits of real-time monitoring poses significant challenges for practical implementations. The former requires that the classification model be adjusted continuously, and the latter requires a reduction in the number and types of ECG features, and thus, the computational burden, necessary to classify different arrhythmias. We propose the use of adaptive learning to automatically train the classifier on up-to-date ECG data, and employ adaptive feature selection to define unique feature subsets pertinent to different types of arrhythmia. Experimental results show that this hybrid technique outperforms conventional approaches and is therefore a promising new intelligent diagnostic tool.
Negative emotion causes stress and lack of attention concentration. The classification of negative emotion is important to recognize risk factors. To classify emotion status, various methods such as questionnaires and interview are used and it could be changed by personal thinking. To solve the problem, we acquire multi modal bio-signals such as electrocardiogram (ECG), skin temperature (ST), galvanic skin response (GSR) and extract features. The neural network (NN), the deep neural network (DNN), and the deep belief network (DBN) is designed using the multi modal bio-signals to analyze emotion status. As a result, the DBN based on features extracted from ECG, ST and GSR shows the highest accuracy (93.8%). It is 5.7% higher than compared to the NN and 1.4% higher than compared to the DNN. It shows 12.2% higher accuracy than using only single bio-signal (GSR). The multi modal bio-signal acquisition and the deep learning classifier play an important role to classify emotion.
Dynamic time warping (DTW) is the main algorithms for time series alignment. However, it is unsuitable for quasi-periodic time series. In the current situation, except the recently published the shape exchange algorithm (SEA) method and its derivatives, no other technique is able to handle alignment of this type of very complex time series. In this work, we propose a novel algorithm that combines the advantages of the SEA and the DTW methods. Our main contribution consists in the elevation of the DTW power of alignment from the lowest level (Class A, non-periodic time series) to the highest level (Class C, multiple-periods time series containing different number of periods each), according to the recent classification of time series alignment methods proposed by Boucheham (Int J Mach Learn Cybern, vol. 4, no. 5, pp. 537-550, 2013). The new method (quasi-periodic dynamic time warping [QP-DTW]) was compared to both SEA and DTW methods on electrocardiogram (ECG) time series, selected from the Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) public database and from the PTB Diagnostic ECG Database. Results show that the proposed algorithm is more effective than DTW and SEA in terms of alignment accuracy on both qualitative and quantitative levels. Therefore, QP-DTW would potentially be more suitable for many applications related to time series (e.g., data mining, pattern recognition, search/retrieval, motif discovery, classification, etc.).
부정맥 분류를 위한 기존 연구들은 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 즉, 생체 신호의 특성상 개인 간의 차이가 있음에도 불구하고, 일반적인 ECG 신호의 판단규칙에 따라 진단을 수행하기 때문이다. 또한 이러한 대부분의 방법들은 P, Q, R, S, T 지점의 정확한 측정을 필요로 하며, 데이터의 가공 및 연산이 복잡하다. 따라서 이러한 문제점을 극복하기 위해서는 개인별 특성을 가진 ECG 데이터를 분석하여 최소한의 특징점을 추출함으로써 그에 따른 패턴을 분류하는 것이 필요하다. 본 연구에서는 이상 심전도와 같은 다양한 신호를 고려하여 Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석기법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 Q, R, S의 진폭과 위상변화에 따른 8개의 특징점을 추출하였다. 이후 각 특징점의 피크 변화와 형태에 따른 ECG 신호를 분석하고 부정맥 유형에 따른 9가지 패턴을 정의하였다. 제안한 방법의 우수성을 입증하기 위해 43개의 MIT-BIH 레코드를 대상으로 Normal, PVC, PAC, LBBB, RBBB, Paced Beat의 각 패턴을 분석하였다. 실험결과 9가지 패턴에 대한 검출율은 93.72%로 우수하게 나타났다.
심전도 신호 분석 및 부정맥 분류는 환자를 진단하고 치료하는데 중요한 역할을 한다. 부정맥은 맥박이 불규칙한 상태로 심실빈맥(VT)이나 심실세동(VF) 환자에게 심각한 위협이 될 수 있다. 심방조기수축(APC)과 상심실성빈맥(SVT), 심실조기수축(PVC)은 심실빈맥(VT)만큼 치명적이지는 않지만 심장질환을 진단하는데 중요한 부정맥이다. 본 논문은 2~3개의 부정맥 분류만을 고려한 기존의 방법을 극복하고 다양한 부정맥을 분류하기 위한 새로운 방법을 제시한다. 심전도 신호의 특징 추출을 위해서 EMD 방법으로 신호를 분해하여 IMFs를 얻는다. 입력 데이터의 양은 분류기 성능에 영향을 미치므로 신호 데이터의 차원을 감소시키기 위해 Burg 알고리즘을 IMFs에 적용하여 AR 계수를 구하고 여러 개의 이진 분류기를 결합한 다중 클래스 SVM의 입력으로 사용한다. 최적의 SVM 성능 파라미터를 선택하고 부정맥 분류에 적용한 결과 검출의 정확성은 96.8%~99.5%였다. 실험 결과는 제안한 EMD 방법에 의한 전처리 및 특징 추출과 다중 클래스 SVM에 의한 부정맥 분류의 유용성을 보여준다.
부정맥 심전도 신호는 전도장애 및 발생부위에 따라 특정 부위에서 비정상 모양을 띄는 특이심박을 포함하고 있다. 특이심박은 부정맥 등 다양한 질환을 진단 및 분류하는데 있어 유용하기 때문에 부정맥 심전도 신호에서 특이심박의 검출은 매우 중요하다. R-peak점에서의 전위, 첨도 및 R-R 간격은 심전도 신호가 R파에서 가지는 특성이다. 본 논문에서는 이를 바탕으로 특이심박 검출 방법을 제안한다. 제안한 방법은 특이심박이 확실할수록 특성값이 평균에서 크게 벗어난다는 점을 기반으로 평균과 표준편차를 이용하여 순차적으로 특이심박을 검출한다. MIT-BIH 부정맥 데이터베이스 중 R파 왜곡을 가지는 15개의 심전도 신호에 대해 기존의 고정된 문턱값을 사용한 검출 방법과 제안한 방법을 적용하여 특이심박을 검출하여 비교하였다. 실험을 통해 민감도를 약 50~70%에서 제안한 방법을 통해 97%로 크게 상향할 수 있었다.
수면단계는 수면감을 평가하는 데 있어서 중요한 생리지표로서 사용되어 왔다. 그러나 수면다원검사를 이용한 전통적 수면단계 분류방법은 뇌전도(electroencephalogram : EEG), 안전도(electrooculogram : EOG), 심전도(electrocardiogram : ECG), 근전도(electromyogram : EMG) 등을 종합적으로 측정하므로 수면단계를 비교적 정확히 분류할 수 있지만 피험자에게 심한 구속감을 주는 문제가 있다. 본 연구에서는, 각성상태에서 교감신경계가 지배적인 반면에 수면 중에는 부교감 신경계가 더 활동적인 점에 착안하여 수면단계를 간단히 분류할 수 있는 방법을 찾고자 수면단계에 따른 심박동변이도(heart rate variability : HRY)를 분석하였다. 이 실험에는 건강한 대학생 6명이 2일씩 전체 12회의 야간수면에 참여하였다. 수면다원검사 장치를 이용하여 피험자들이 수면을 취하고 있는 동안, EEG, EOG, ECG, EMG(턱 및 다리)를 측정하여 수면단계를 "Standard scoring system for sleep stage"에 따라 자동으로 분류하였다. 그런 뒤, 본 연구를 통하여 제작된 Sleep Data Acquisition/Analysis 시스템을 이용하여 수면다원검사 장치로부터 ECG신호만 추출하여 HRV의 전력스펙트럼을 3개의 영역[저주파수대역(low frequency : LF), 중간주파수대역(medium frequency : MF), 고주파수대역(high frequency : HF)]으로 나누어 분석하였다. 단일채널 ECG를 이용하여 수면단계별로 HRV의 LF/HF를 분석한 결과, W(wakefulness)단계가 2단계에 비하여 325%높게(p<.05), 3단계에 비하여 628%높게(p<.001), 4단계에 비하여 800%높게(p<.001) 나타났으며, 4단계는 REM(rapid eye movement)단계에 비하여 427% 낮게(p<.05), 1단계에 비하여 418% 낮게(p<.05) 나타났다. 또한 LF/HF가 수면단계에 따라 변화하는 양상은 W, REM, 1, 2, 3, 4단계의 순으로 단조 감소하였다. 한편, 수면단계별 MF/(LF+HF)의 차이는 유의하지 않았으나 표본집단의 기술통계치를 살펴본 바 REM단계와 3단계의 평균치가 가장 높았다.치가 가장 높았다.
Arrhythmia is basically diagnosed with the electrocardiogram (ECG) signal, however, ECG is difficult to measure and it requires expert help in analyzing the signal. On the other hand, the radial pulse can be measured with easy and uncomplicated way in daily life, and could be suitable bio-signal for the recent untact paradigm and extensible signal for diagnosis of Korean medicine based on pulse pattern. In this study, we developed an irregular radial pulse detection algorithm based on a learning model and considered its applicability as arrhythmia screening. A total of 1432 pulse waves including irregular pulse data were used in the experiment. Three data sets were prepared with minimal preprocessing to avoid the heuristic feature extraction. As classification algorithms, elastic net logistic regression, random forest, and extreme gradient boosting were applied to each data set and the irregular pulse detection performances were estimated using area under the receiver operating characteristic curve based on a 10-fold cross-validation. The extreme gradient boosting method showed the superior performance than others and found that the classification accuracy reached 99.7%. The results confirmed that the proposed algorithm could be used for arrhythmia screening. To make a fusion technology integrating western and Korean medicine, arrhythmia subtype classification from the perspective of Korean medicine will be needed for future research.
Suh Young Kim;Young Joo Suh;Na Young Kim;Suji Lee;Kyungsun Nam;Jeongyun Kim;Hwan Kim;Hyunji Lee;Kyunghwa Han;Hwan Seok Yong
Korean Journal of Radiology
/
제24권4호
/
pp.284-293
/
2023
Objective: To validate a simplified ordinal scoring method, referred to as modified length-based grading, for assessing coronary artery calcium (CAC) severity on non-electrocardiogram (ECG)-gated chest computed tomography (CT). Materials and Methods: This retrospective study enrolled 120 patients (mean age ± standard deviation [SD], 63.1 ± 14.5 years; male, 64) who underwent both non-ECG-gated chest CT and ECG-gated cardiac CT between January 2011 and December 2021. Six radiologists independently assessed CAC severity on chest CT using two scoring methods (visual assessment and modified length-based grading) and categorized the results as none, mild, moderate, or severe. The CAC category on cardiac CT assessed using the Agatston score was used as the reference standard. Agreement among the six observers for CAC category classification was assessed using Fleiss kappa statistics. Agreement between CAC categories on chest CT obtained using either method and the Agatston score categories on cardiac CT was assessed using Cohen's kappa. The time taken to evaluate CAC grading was compared between the observers and two grading methods. Results: For differentiation of the four CAC categories, interobserver agreement was moderate for visual assessment (Fleiss kappa, 0.553 [95% confidence interval {CI}: 0.496-0.610]) and good for modified length-based grading (Fleiss kappa, 0.695 [95% CI: 0.636-0.754]). The modified length-based grading demonstrated better agreement with the reference standard categorization with cardiac CT than visual assessment (Cohen's kappa, 0.565 [95% CI: 0.511-0.619 for visual assessment vs. 0.695 [95% CI: 0.638-0.752] for modified length-based grading). The overall time for evaluating CAC grading was slightly shorter in visual assessment (mean ± SD, 41.8 ± 38.9 s) than in modified length-based grading (43.5 ± 33.2 s) (P < 0.001). Conclusion: The modified length-based grading worked well for evaluating CAC on non-ECG-gated chest CT with better interobserver agreement and agreement with cardiac CT than visual assessment.
The present study proposes an algorithm that can discriminate between normal subjects and paroxysmal atrial fibrillation (PAF) patients, which is conducted using electrocardiogram (ECG) without PAF events. For this, time-domain features and random forest classifier are used. Time-domain features are obtained from Poincare plot, Lorenz plot of ${\delta}RR$ interval, and morphology analysis. Afterward, three features are selected in total through feature selection. PAF patients and normal subjects are classified using random forest. The classification result showed that sensitivity and specificity were 81.82% and 95.24% respectively, the positive predictive value and negative predictive value were 96.43% and 76.92% respectively, and accuracy was 87.04%. The proposed algorithm had an advantage in terms of the computation requirement compared to existing algorithm, so it has suggested applicability in the more efficient prediction of PAF.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.