• 제목/요약/키워드: Electrocardiogram(ECG) classification

검색결과 46건 처리시간 0.031초

Real-Time Automated Cardiac Health Monitoring by Combination of Active Learning and Adaptive Feature Selection

  • Bashir, Mohamed Ezzeldin A.;Shon, Ho Sun;Lee, Dong Gyu;Kim, Hyeongsoo;Ryu, Keun Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권1호
    • /
    • pp.99-118
    • /
    • 2013
  • Electrocardiograms (ECGs) are widely used by clinicians to identify the functional status of the heart. Thus, there is considerable interest in automated systems for real-time monitoring of arrhythmia. However, intra- and inter-patient variability as well as the computational limits of real-time monitoring poses significant challenges for practical implementations. The former requires that the classification model be adjusted continuously, and the latter requires a reduction in the number and types of ECG features, and thus, the computational burden, necessary to classify different arrhythmias. We propose the use of adaptive learning to automatically train the classifier on up-to-date ECG data, and employ adaptive feature selection to define unique feature subsets pertinent to different types of arrhythmia. Experimental results show that this hybrid technique outperforms conventional approaches and is therefore a promising new intelligent diagnostic tool.

다중 모달 생체신호를 이용한 딥러닝 기반 감정 분류 (Deep Learning based Emotion Classification using Multi Modal Bio-signals)

  • 이지은;유선국
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.146-154
    • /
    • 2020
  • Negative emotion causes stress and lack of attention concentration. The classification of negative emotion is important to recognize risk factors. To classify emotion status, various methods such as questionnaires and interview are used and it could be changed by personal thinking. To solve the problem, we acquire multi modal bio-signals such as electrocardiogram (ECG), skin temperature (ST), galvanic skin response (GSR) and extract features. The neural network (NN), the deep neural network (DNN), and the deep belief network (DBN) is designed using the multi modal bio-signals to analyze emotion status. As a result, the DBN based on features extracted from ECG, ST and GSR shows the highest accuracy (93.8%). It is 5.7% higher than compared to the NN and 1.4% higher than compared to the DNN. It shows 12.2% higher accuracy than using only single bio-signal (GSR). The multi modal bio-signal acquisition and the deep learning classifier play an important role to classify emotion.

QP-DTW: Upgrading Dynamic Time Warping to Handle Quasi Periodic Time Series Alignment

  • Boulnemour, Imen;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • 제14권4호
    • /
    • pp.851-876
    • /
    • 2018
  • Dynamic time warping (DTW) is the main algorithms for time series alignment. However, it is unsuitable for quasi-periodic time series. In the current situation, except the recently published the shape exchange algorithm (SEA) method and its derivatives, no other technique is able to handle alignment of this type of very complex time series. In this work, we propose a novel algorithm that combines the advantages of the SEA and the DTW methods. Our main contribution consists in the elevation of the DTW power of alignment from the lowest level (Class A, non-periodic time series) to the highest level (Class C, multiple-periods time series containing different number of periods each), according to the recent classification of time series alignment methods proposed by Boucheham (Int J Mach Learn Cybern, vol. 4, no. 5, pp. 537-550, 2013). The new method (quasi-periodic dynamic time warping [QP-DTW]) was compared to both SEA and DTW methods on electrocardiogram (ECG) time series, selected from the Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) public database and from the PTB Diagnostic ECG Database. Results show that the proposed algorithm is more effective than DTW and SEA in terms of alignment accuracy on both qualitative and quantitative levels. Therefore, QP-DTW would potentially be more suitable for many applications related to time series (e.g., data mining, pattern recognition, search/retrieval, motif discovery, classification, etc.).

Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석 (Pattern Analysis of Personalized ECG Signal by Q, R, S Peak Variability)

  • 조익성;권혁숭;김주만;김선종;김병철
    • 한국정보통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.192-200
    • /
    • 2015
  • 부정맥 분류를 위한 기존 연구들은 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 즉, 생체 신호의 특성상 개인 간의 차이가 있음에도 불구하고, 일반적인 ECG 신호의 판단규칙에 따라 진단을 수행하기 때문이다. 또한 이러한 대부분의 방법들은 P, Q, R, S, T 지점의 정확한 측정을 필요로 하며, 데이터의 가공 및 연산이 복잡하다. 따라서 이러한 문제점을 극복하기 위해서는 개인별 특성을 가진 ECG 데이터를 분석하여 최소한의 특징점을 추출함으로써 그에 따른 패턴을 분류하는 것이 필요하다. 본 연구에서는 이상 심전도와 같은 다양한 신호를 고려하여 Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석기법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 Q, R, S의 진폭과 위상변화에 따른 8개의 특징점을 추출하였다. 이후 각 특징점의 피크 변화와 형태에 따른 ECG 신호를 분석하고 부정맥 유형에 따른 9가지 패턴을 정의하였다. 제안한 방법의 우수성을 입증하기 위해 43개의 MIT-BIH 레코드를 대상으로 Normal, PVC, PAC, LBBB, RBBB, Paced Beat의 각 패턴을 분석하였다. 실험결과 9가지 패턴에 대한 검출율은 93.72%로 우수하게 나타났다.

다중 클래스 SVM을 이용한 EMD 기반의 부정맥 신호 분류 (EMD based Cardiac Arrhythmia Classification using Multi-class SVM)

  • 이금분;조범준
    • 한국정보통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.16-22
    • /
    • 2010
  • 심전도 신호 분석 및 부정맥 분류는 환자를 진단하고 치료하는데 중요한 역할을 한다. 부정맥은 맥박이 불규칙한 상태로 심실빈맥(VT)이나 심실세동(VF) 환자에게 심각한 위협이 될 수 있다. 심방조기수축(APC)과 상심실성빈맥(SVT), 심실조기수축(PVC)은 심실빈맥(VT)만큼 치명적이지는 않지만 심장질환을 진단하는데 중요한 부정맥이다. 본 논문은 2~3개의 부정맥 분류만을 고려한 기존의 방법을 극복하고 다양한 부정맥을 분류하기 위한 새로운 방법을 제시한다. 심전도 신호의 특징 추출을 위해서 EMD 방법으로 신호를 분해하여 IMFs를 얻는다. 입력 데이터의 양은 분류기 성능에 영향을 미치므로 신호 데이터의 차원을 감소시키기 위해 Burg 알고리즘을 IMFs에 적용하여 AR 계수를 구하고 여러 개의 이진 분류기를 결합한 다중 클래스 SVM의 입력으로 사용한다. 최적의 SVM 성능 파라미터를 선택하고 부정맥 분류에 적용한 결과 검출의 정확성은 96.8%~99.5%였다. 실험 결과는 제안한 EMD 방법에 의한 전처리 및 특징 추출과 다중 클래스 SVM에 의한 부정맥 분류의 유용성을 보여준다.

심전도 신호에서 R파 왜곡에 따른 적응적 특이심박 검출 (Adaptive Detection of Unusual Heartbeat According to R-wave Distortion on ECG Signal)

  • 이승민;류춘하;박길흠
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.200-207
    • /
    • 2014
  • 부정맥 심전도 신호는 전도장애 및 발생부위에 따라 특정 부위에서 비정상 모양을 띄는 특이심박을 포함하고 있다. 특이심박은 부정맥 등 다양한 질환을 진단 및 분류하는데 있어 유용하기 때문에 부정맥 심전도 신호에서 특이심박의 검출은 매우 중요하다. R-peak점에서의 전위, 첨도 및 R-R 간격은 심전도 신호가 R파에서 가지는 특성이다. 본 논문에서는 이를 바탕으로 특이심박 검출 방법을 제안한다. 제안한 방법은 특이심박이 확실할수록 특성값이 평균에서 크게 벗어난다는 점을 기반으로 평균과 표준편차를 이용하여 순차적으로 특이심박을 검출한다. MIT-BIH 부정맥 데이터베이스 중 R파 왜곡을 가지는 15개의 심전도 신호에 대해 기존의 고정된 문턱값을 사용한 검출 방법과 제안한 방법을 적용하여 특이심박을 검출하여 비교하였다. 실험을 통해 민감도를 약 50~70%에서 제안한 방법을 통해 97%로 크게 상향할 수 있었다.

수면단계 자동분류를 위한 심박동변이도 분석 (Analyzing Heart Rate Variability for Automatic Sleep Stage Classification)

  • 김원식;김교헌;박세진;신재우;윤영로
    • 감성과학
    • /
    • 제6권4호
    • /
    • pp.9-14
    • /
    • 2003
  • 수면단계는 수면감을 평가하는 데 있어서 중요한 생리지표로서 사용되어 왔다. 그러나 수면다원검사를 이용한 전통적 수면단계 분류방법은 뇌전도(electroencephalogram : EEG), 안전도(electrooculogram : EOG), 심전도(electrocardiogram : ECG), 근전도(electromyogram : EMG) 등을 종합적으로 측정하므로 수면단계를 비교적 정확히 분류할 수 있지만 피험자에게 심한 구속감을 주는 문제가 있다. 본 연구에서는, 각성상태에서 교감신경계가 지배적인 반면에 수면 중에는 부교감 신경계가 더 활동적인 점에 착안하여 수면단계를 간단히 분류할 수 있는 방법을 찾고자 수면단계에 따른 심박동변이도(heart rate variability : HRY)를 분석하였다. 이 실험에는 건강한 대학생 6명이 2일씩 전체 12회의 야간수면에 참여하였다. 수면다원검사 장치를 이용하여 피험자들이 수면을 취하고 있는 동안, EEG, EOG, ECG, EMG(턱 및 다리)를 측정하여 수면단계를 "Standard scoring system for sleep stage"에 따라 자동으로 분류하였다. 그런 뒤, 본 연구를 통하여 제작된 Sleep Data Acquisition/Analysis 시스템을 이용하여 수면다원검사 장치로부터 ECG신호만 추출하여 HRV의 전력스펙트럼을 3개의 영역[저주파수대역(low frequency : LF), 중간주파수대역(medium frequency : MF), 고주파수대역(high frequency : HF)]으로 나누어 분석하였다. 단일채널 ECG를 이용하여 수면단계별로 HRV의 LF/HF를 분석한 결과, W(wakefulness)단계가 2단계에 비하여 325%높게(p<.05), 3단계에 비하여 628%높게(p<.001), 4단계에 비하여 800%높게(p<.001) 나타났으며, 4단계는 REM(rapid eye movement)단계에 비하여 427% 낮게(p<.05), 1단계에 비하여 418% 낮게(p<.05) 나타났다. 또한 LF/HF가 수면단계에 따라 변화하는 양상은 W, REM, 1, 2, 3, 4단계의 순으로 단조 감소하였다. 한편, 수면단계별 MF/(LF+HF)의 차이는 유의하지 않았으나 표본집단의 기술통계치를 살펴본 바 REM단계와 3단계의 평균치가 가장 높았다.치가 가장 높았다.

  • PDF

통계적 학습 모형에 기반한 불규칙 맥파 검출 알고리즘 개발 (Development of The Irregular Radial Pulse Detection Algorithm Based on Statistical Learning Model)

  • 배장한;장준수;구본초
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권5호
    • /
    • pp.185-194
    • /
    • 2020
  • Arrhythmia is basically diagnosed with the electrocardiogram (ECG) signal, however, ECG is difficult to measure and it requires expert help in analyzing the signal. On the other hand, the radial pulse can be measured with easy and uncomplicated way in daily life, and could be suitable bio-signal for the recent untact paradigm and extensible signal for diagnosis of Korean medicine based on pulse pattern. In this study, we developed an irregular radial pulse detection algorithm based on a learning model and considered its applicability as arrhythmia screening. A total of 1432 pulse waves including irregular pulse data were used in the experiment. Three data sets were prepared with minimal preprocessing to avoid the heuristic feature extraction. As classification algorithms, elastic net logistic regression, random forest, and extreme gradient boosting were applied to each data set and the irregular pulse detection performances were estimated using area under the receiver operating characteristic curve based on a 10-fold cross-validation. The extreme gradient boosting method showed the superior performance than others and found that the classification accuracy reached 99.7%. The results confirmed that the proposed algorithm could be used for arrhythmia screening. To make a fusion technology integrating western and Korean medicine, arrhythmia subtype classification from the perspective of Korean medicine will be needed for future research.

A Modified Length-Based Grading Method for Assessing Coronary Artery Calcium Severity on Non-Electrocardiogram-Gated Chest Computed Tomography: A Multiple-Observer Study

  • Suh Young Kim;Young Joo Suh;Na Young Kim;Suji Lee;Kyungsun Nam;Jeongyun Kim;Hwan Kim;Hyunji Lee;Kyunghwa Han;Hwan Seok Yong
    • Korean Journal of Radiology
    • /
    • 제24권4호
    • /
    • pp.284-293
    • /
    • 2023
  • Objective: To validate a simplified ordinal scoring method, referred to as modified length-based grading, for assessing coronary artery calcium (CAC) severity on non-electrocardiogram (ECG)-gated chest computed tomography (CT). Materials and Methods: This retrospective study enrolled 120 patients (mean age ± standard deviation [SD], 63.1 ± 14.5 years; male, 64) who underwent both non-ECG-gated chest CT and ECG-gated cardiac CT between January 2011 and December 2021. Six radiologists independently assessed CAC severity on chest CT using two scoring methods (visual assessment and modified length-based grading) and categorized the results as none, mild, moderate, or severe. The CAC category on cardiac CT assessed using the Agatston score was used as the reference standard. Agreement among the six observers for CAC category classification was assessed using Fleiss kappa statistics. Agreement between CAC categories on chest CT obtained using either method and the Agatston score categories on cardiac CT was assessed using Cohen's kappa. The time taken to evaluate CAC grading was compared between the observers and two grading methods. Results: For differentiation of the four CAC categories, interobserver agreement was moderate for visual assessment (Fleiss kappa, 0.553 [95% confidence interval {CI}: 0.496-0.610]) and good for modified length-based grading (Fleiss kappa, 0.695 [95% CI: 0.636-0.754]). The modified length-based grading demonstrated better agreement with the reference standard categorization with cardiac CT than visual assessment (Cohen's kappa, 0.565 [95% CI: 0.511-0.619 for visual assessment vs. 0.695 [95% CI: 0.638-0.752] for modified length-based grading). The overall time for evaluating CAC grading was slightly shorter in visual assessment (mean ± SD, 41.8 ± 38.9 s) than in modified length-based grading (43.5 ± 33.2 s) (P < 0.001). Conclusion: The modified length-based grading worked well for evaluating CAC on non-ECG-gated chest CT with better interobserver agreement and agreement with cardiac CT than visual assessment.

Prediction of Paroxysmal Atrial Fibrillation using Time-domain Analysis and Random Forest

  • Lee, Seung-Hwan;Kang, Dong-Won;Lee, Kyoung-Joung
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권2호
    • /
    • pp.69-79
    • /
    • 2018
  • The present study proposes an algorithm that can discriminate between normal subjects and paroxysmal atrial fibrillation (PAF) patients, which is conducted using electrocardiogram (ECG) without PAF events. For this, time-domain features and random forest classifier are used. Time-domain features are obtained from Poincare plot, Lorenz plot of ${\delta}RR$ interval, and morphology analysis. Afterward, three features are selected in total through feature selection. PAF patients and normal subjects are classified using random forest. The classification result showed that sensitivity and specificity were 81.82% and 95.24% respectively, the positive predictive value and negative predictive value were 96.43% and 76.92% respectively, and accuracy was 87.04%. The proposed algorithm had an advantage in terms of the computation requirement compared to existing algorithm, so it has suggested applicability in the more efficient prediction of PAF.