• Title/Summary/Keyword: Electro-optical method

Search Result 270, Processing Time 0.043 seconds

Structural Safety Evaluation of Electro-Optical Camera Controller Box of CAS500 Satellite under Launch Environments (발사환경에 대한 차세대 중형위성 전자광학 카메라 제어용 전장품의 구조건전성 평가)

  • Lee, Myeong-Jae;Kim, Hyun-Soo;Lee, Duk-Kyu;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.98-105
    • /
    • 2018
  • The satellite is exposed to various launch environments such as random vibrations and shock. Accordingly, structural design of electronic equipment mounted on satellite must meet reliability requirements at the box level. In addition, it is essential to secure the reliability of the solder joint applied to electronic equipment. In this paper, we performed a modal and quasi-static analysis for the purpose of satisfaction of the design requirements of the CCB (Camera Controller Box) present on the 500 kg-class compact advanced satellite (CAS500). In addition, structural safety of electronic components was verified by the Steinberg's method and random equivalent static analysis.

LC Orientation Characteristics of NLC on Polyimide Surface According to Ion-beam Irradiation Angles (이온빔 조사각도에 따른 네마틱 액정의 액정 배향 특성)

  • Lee, Kang-Min;Oh, Byeong-Yun;Park, Hong-Gyu;Lim, Ji-Hun;Lee, Won-Kyu;Na, Hyun-Jae;Kim, Byoung-Yong;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.329-329
    • /
    • 2008
  • To date, rubbing has been widely used to align LC molecules uniformly. Although rubbing can be simple, it has fundamental problems such as the generation of defects by dust and static electricity, and difficulty in achieving a uniform LC alignment on a large substrate. Therefore, noncontact alignment has been investigated. Ion beam induced alignment method, which provides controllability, nonstop process, and high resolution display. In this study, we investigated liquid crystal (LC) alignment with ion beam (IB) that non contact alignment technique on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the poly imide under various ion beam angles. In this experiment, Polyimide layer was coated on glass by spin-coating and Voltage-transmittance(VT) and response time characteristics of the TN cell were measured by a LCD evaluation system. The good characteristics of the nematic liquid crystal (NLC) alignment with the ion beam exposure poly imide surface was observed. The tilt angle of NLC on the PI surface with ion beam exposure can be measured under $1^{\circ}4 for all of irradiation angles. In addition, it can be achieved the good ED properties, and residual DC property of the ion beam aligned TN cell on polyimide surface.

  • PDF

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).

MTF measuring method of TDI camera electronics

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Yong, Sang-Soon;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.540-543
    • /
    • 2007
  • The modulation transfer function (MTF) in a camera system is a measurement of how well the system will faithfully reproduce the original scene. The electro-optical camera system consists of optics, an array of pixels, and an electronics which is related to the image signal chain. The system MTF can be cascaded with each element's MTF in the frequency domain. That is to say, the electronics MTF including the detector MTF can be recalculated easily by the acquired system MTF if the well-known test optics is used in the measuring process. A Time-Delay and Integration (TDI) detector can make a signal increase by taking multiple exposures of the same object and adding them. It can be considered the various methods to measure the MTF of the TDI camera system. This paper shows the actual and practical MTF measuring methods for the detector and electronics in the TDI camera. The several methods are described according to the scan direction as well as the TDI stages such as the single line mode and the multiple-lines mode. The measuring is performed in the in the static condition or dynamic condition to get the point spread function (PSF) or the line spread function (LSF). Especially, the dynamic test bench is used to simulate on track velocity to synchronize with TDI read out frequency for the dynamic movement.

  • PDF

THE KOMPSAT- I PAYLOADS OVERVIEW

  • Paik, Hong-Yul;Park, Gi-Hyuk;Youn, Hyeong-Sik;Lee, Seunghoon;Woo, Sun-Hee;Shim, Hyung-Sik;Oh, Kyoung-Hwan;Cho, Young-Min;Yong, Sang-Soon;Lee, Sang-Gyu;Heo, Haeng-Pal
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.301-306
    • /
    • 1998
  • Korea Aerospace Research Institute (KARI) is developing a Korea Multi-Purpose Satellite I (KOMPSAT-I) which accommodates Electro-Optical Camera (EOC), Ocean Scanning Multi-spectral Imager (OSMI), and Space Physics Sensor (SPS). The satellite has the weight of about 500kg and will be operated on the 10:50 AM sun-synchronized orbit with the altitude of 685 km. The satellite will be launched in 1999 and its lifetime is expected to be over 3 years. The main mission of EOC is the cartography to provide the images from a remote earth view for the production of 1/25000-scale maps of KOREA. EOC collects 510 ~ 730 nm panchromatic imagery with the ground sample distance(GSD) of 6.6 m and the swath width of 17 km by push broom scanning. EOC also can scan $\pm$45 degree across the ground track using body pointing method. The primary mission of OSMI is worldwide ocean color monitoring for the study of biological oceanography. It will generate 6 band ocean color images with 800 km swath width and 1km GSD by whiskbroom scanning. OSMI is designed to provide on-orbit spectral band selectability in the spectral range from 400 nm to 900 nm through ground command. This flexibility in band selection can be used for various applications and will provide research opportunities to support the next generation sensor design. SPS consists of High Energy Particle Detector (HEPD) and ionosphere Measurement Sensor (IMS). HEPD has missions to characterize the low altitude high-energy Particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities at the KOMPSAT orbit.

  • PDF

Effect of the Substrate Temperature on the Characteristics of CIGS Thin Films by RF Magnetron Sputtering Using a $Cu(In_{1-x}Ga_x)Se_2$ Single Target

  • Jung, Sung-Hee;Kong, Seon-Mi;Fan, Rong;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.382-382
    • /
    • 2012
  • CIGS thin films have received great attention as a promising material for solar cells due to their high absorption coefficient, appropriate bandgap, long-term stability, and low cost production. CIGS thin films are deposited by various methods such as co-evaporation, sputtering, spray pyrolysis and electro-deposition. The deposition technique is one of the most important processes in preparing CIGS thin film solar cells. Among these methods, co-evaporation is one of the best technique for obtaining high quality and stoichiometric CIGS films. However, co-evaporation method is known to be unsuitable for commercialization. The sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have prepared by rf magnetron sputtering using a $Cu(In_{1-x}Ga_x)Se_2$ single quaternary target without post deposition selenization. This process has been examined by the effects of deposition parameters on the structural and compositional properties of the films. In addition, we will explore the influences of substrate temperature and additional annealing treatment after deposition on the characteristics of CIGS thin films. The thickness of CIGS films will be measured by Tencor-P1 profiler. The crystalline properties and surface morphology of the films will be analyzed using X-ray diffraction and scanning electron microscopy, respectively. The optical properties of the films will be determined by UV-Visible spectroscopy. Electrical properties of the films will be measured using van der Pauw geometry and Hall effect measurement at room temperature using indium ohmic contacts.

  • PDF

Built-in voltage depending on Al and LiAl electrodes in organic light-emitting diodes (유기 발광 소자에서 Al과 LiAl 전극에 따른 내장 전압 측정)

  • Yoon, Hee-Myoung;Lee, Eun-Hye;Han, Wone-Keun;Kim, Tae-Wan;Cho, Seong-Oh;Jang, Kyung-Uk;Chung, Dong-Hoe;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.449-449
    • /
    • 2008
  • 전기 흡수 방법과 변조 광전류 분광학을 이용하는 방법으로 내장 전압을 측정할 수 있다. 이 논문에서는 변조 광전류 분광학을 사용하였다. 소자에 인가 전압이 영일 때 양극과 음극의 일 함수 차이 때문에 내장 전압이 존재하며, 그로 인해 내장 전기장이 생긴다. 유기 발광 소자의 광전도도는 엑시톤이 자유 전자와 정공으로 분리될 때 발생한다. 이 때 발생되는 광전류의 크기와 광전류의 위상 변화를 측정하여 내장 전압을 추정한다. 소자의 구조는 두 전극 사이에 단층으로 하여 만들었으며 모든 소자에서 발광층인 $Alq_3$ 두께는 150nm로 하였고, 양극으로는 ITO를 사용하였으며, 음극으로는 Al과 LiAl을 100nm 두께와 150nm두께로 하였다. ITO/$Alq_3$/Al 소자 구조에서 Al 100nm 와 150nm 로 두께 변화를 주었으나 내장 전압은 1.0eV로 변화가 없었다. ITO/$Alq_3$/LiAl 소자 구조에서 LiAl이 100nm 와 150nm 두께 변화에서도 내장 전압은 1. 8eV로 같은 크기를 보였다. 이로 부터 전극의 두께와는 상관없이 일정한 내장 전압이 측정됨을 알 수 있었다. LiAl을 사용한 소자의 경우 Al을 음극으로 사용한 소자에 비해 내장 전압이 0.8eV 증가되었다. 이는 LiAl의 일함수가 Al보다 낮은 값을 갖는 것과 일치하는 결과이다. 이런 결과가 나온 까닭은 LiAl을 음극으로 사용한 경우에는 자유로운 $Li^+$이 발생하여 유기물에 더 좋은 전자 주입이 되도록 하여 소자의 전자 장벽을 낮추었기 때문에 전자의 주입이 활발하여 광전류의 이동이 용이했음을 알 수 있다.

  • PDF

Built-in voltage depending on electrode in organic light-emitting diodes (전극 변화에 따른 유기 발광 소자의 내장 전압)

  • Yoon, Hee-Myoung;Lee, Eun-Hye;Lee, Won-Jae;Chung, Dong-Hoe;Oh, Young-Cheul;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.14-16
    • /
    • 2008
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photocurrent is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. ITO was used as an anode, and Al and LiAl were used as a cathode. A layer thickness of Al and LiAl were 100nm. Obtained built-in voltage is about 1.0V in the Al layer was used as a cathode. The obatined built-in voltage is about 1.6V in the LiAl layer was used as a cathode. The result of built-in voltage is dependent of cathode. We can see that the built-in voltage increase up to 0.4V when the LiAl layer was used as the cathode. These results correspond to the work function of LiAl which is lower than that of Al. As a result, the barrier height for an electron injection from the cathode to the organic layer could be lowered when the LiAl was used as a cathode.

  • PDF

Built-in voltage in organic light-emitting diodes from the measurement of modulated photocurrent (변조 광전류 측정법을 이용하여 전극 변화에 따른 유기발광소자의 내장 전압)

  • Lee, Eun-Hye;Yoon, Hee-Myoung;Han, Wone-Keun;Kim, Tae-Wan;Ahn, Joon-Ho;Oh, Hyun-Seok;Jang, Kyung-Uk;Chung, Dong-Hoe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.51-52
    • /
    • 2007
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photo current is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. ITO and ITO/PEDOT:PSS were used as an anode, and Al and LiF/AI were used as a cathode. It was found that an incorporation of PEDOT:PSS layer between the ITO and $Alq_3$ increases a built-in voltage by about 0.4V. This is consistent to a difference of a highest occupied energy states of ITO and PEDOT:PSS. This implies that a use of PEDOT:PSS layer in anode improves the efficiency of the device because of a lowering of anode barrier height. With a use bilayer cathode system LiF/Al, it was found that the built-in voltage increases as the LiF layer thickness increases in the thickness range of 0~1nm. For 1nm thick LiF layer, there is a lowering of electron barrier by about 0.2eV with respect to an Al-only device. It indicates that a very thin alkaline metal compound LiF lowers an electron barrier height.

  • PDF

Built-in voltage using of ITO/$Alq_3$/LiAl in organic light-emitting diodes (ITO/$Alq_3$/LiAl 유기 발광 소자의 내장 전압)

  • Yoon, Hee-Myoung;Lee, Eun-Hye;Han, Wone-Keun;Kim, Tae-Wan;Ahn, Joon-Ho;Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.401-401
    • /
    • 2007
  • 내장 전압의 측정은 전기흡수 방법과 변조 광전류 분광학을 이용하는 방법이 있으며, 우리는 이 논문에서 변조 광전류 분광학을 사용하여 내장 전압을 측정하였다. 소자에 인가 전압이 영일 때 양극과 음극의 일 함수 차이 때문에 내장 전압이 존재하며, 그로 인해 내장 전기장이 생긴다. 유기 발광 소자의 광전도도는 엑시톤이 자유전자와 정공으로 분리들 때 발생한다. 이 때 발생되는 광전류와 광전류의 위상 변화를 측정하여 내장 전압을 추정한다. 소자의 구조는 두 전극 사이에 단층으로 하여 만들었으며 모든 소자의 $Alq_3$ 두께는 150nm로 하고, 양극은 ITO를 사용하였고 음극은 Al과 LiAl을 100nm 두께로 하였다. 내장 전압의 측정 결과 ITO/$Alq_3$/LiAl의 내장 전압은 0.9eV로 측정된 데 반해 ITO/$Alq_3$/LiAl은 1.6eV로 측정되었다. 따라서, LiAl을 사용한 소자의 경우 Al을 사용한 소자에 비해 내장 전압이 0.7eV 증가되었다. 이는 LiAl의 일함수가 Al보다 낮은 값을 갖는 것과 일치하는 결과이다. 이런 결과가 나온 까닭은 LiAl을 음극으로 사용한 경우에는 자유로운 $Li^+$이 발생하여 유기물에 더 좋은 전자주입이 되도록 하여 소자의 전자 장벽을 낮추었기 때문에 전자의 주입이 활발하여 광전류의 이동이 용이했음을 알 수 있다.

  • PDF