• 제목/요약/키워드: Electro-magnetic Lens

검색결과 6건 처리시간 0.026초

유한요소법을 사용한 주사전자 현미경의 전자렌즈 설계 및 해석에 관한 연구 (A Study on Design and Analysis for Magnetic Lenses of a Scanning Electron Microscope using Finite Element Method)

  • 박근;정현우;박만진;김동환;장동영
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.95-102
    • /
    • 2007
  • The scanning electron microscope (SEM) is one of the most popular instruments available for the measurement and analysis of the micro/nano structures. It is equipped with an electron optical system that consists of an electron beam source, magnetic lenses, apertures, deflection coils, and a detector. The magnetic lenses playa role in refracting electron beams to obtain a focused spot using the magnetic field driven by an electric current from a coil. A SEM column usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present work concerns finite element analysis for the electron magnetic lenses so as to analyze their magnetic characteristics. To improve the performance of the magnetic lenses, the effect of the excitation current and pole-piece design on the amount of resulting magnetic fields and their peak locations are analyzed through the finite element analysis.

전자빔 가공시스템용 경통의 구축 (Establishment of Column Unit for Electron Beam Machining System)

  • 강재훈;이찬홍;최종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1017-1020
    • /
    • 2004
  • It is not efficient and scarcely out of the question to use commercial expensive electron beam lithography system widely used for semiconductor fabrication process for the manufacturing application field of various devices in the small business scope. Then scanning electron microscope based electron beam machining system is maybe regarded as a powerful model can be used for it simply. To get a complete suite of thus proper system, column unit build up with several electo-magnetic lens is necessarily required more than anything else to modify scanning electron microscope. In this study, various components included several electro-magnetic lens and main body which are essentially constructed for column unit are designed and manufactured. And this established column unit will be used for next connected study in the development step of scanning electron microscope based electron beam machining system.

  • PDF

열전자형 주사전자현미경 결상특성의 수치해석 (Numerical Analysis for the Image Evaluation of a Thermionic SEM)

  • 정현우;박만진;김동환;장동영;박근
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.153-158
    • /
    • 2007
  • The present study covers numerical analysis of a thermionic scanning electron microscope(SEM) column. The SEM column contains an electron optical system in which electrons are emitted and moved to form a focused beam, and this generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system mainly consists of a thermionic electron gun as the beam source, the lens system, the electron control unit, and the vacuum unit. For a systematic design of the electron optical system, the beam trajectories are investigated through numerical analyses by tracing the ray path of the electron beams, and the quality of resulting image is evaluated from the analysis results.

열전자방사형 주사전자 현미경 전자광학계의 유한요소해석 (Finite Element Analysis for Electron Optical System of a Thermionic SEM)

  • 박근;정현우;김동환;장동영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1288-1293
    • /
    • 2007
  • The present study covers the design and analysis of a thermionic scanning electron microscope (SEM) column. The SEM column contains an electron optical system in which electrons are emitted and moved to form a focused beam, and this generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system mainly consists of a thermionic electron gun as the beam source, the lens system, the electron control unit, and the vacuum unit. In the design process, the dimension and capacity of the SEM components need to be optimally determined with the aid of finite element analyses. Considering the geometry of the filament, a three-dimensional (3D) finite element analysis is utilized. Through the analysis, the beam emission characteristics and relevant trajectories are predicted from which a systematic design of the electron optical system is enabled. The validity of the proposed 3D analysis is also discussed by comparing the directional beam spot radius. As a result, a prototype of a thermionic SEM is successfully developed with a relatively short time and low investment costs, which proves the adoptability of the proposed 3D analysis.

  • PDF

소형주사전자현미경용 전자공학계의 개발 (A Development of Electron Optics System of Mini-Sized SEM)

  • 박만진;김일해;김동환;장동영;한동철
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.140-144
    • /
    • 2007
  • As an electron scanning microscopes has traditionally required a considerably large room equipped with several service and pipe lines due to its inherent size. As an alternative, a small sized SEM, simply called a mini-SEM, is introduced even if the performance in terms of magnification and resolution is a little inferior to a classical thermal SEM. However, the size and fabrication cost is dramatically reduced, dedicating to opening a new market. The optical system in the mini-SEM is redesigned and specimen stage is quitely reduced and vertical axis is excluded. The design tools and calibration techniques to develope the mini-SEM are introduced and its performance is verified through numerical analysis experiments.

전계방출 주사전자 현미경의 전자광학계 유한요소해석 (Finite Element Analysis for Electron Optical System of a Field Emission SEM)

  • 박근;박만진;김동환;장동영
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1557-1563
    • /
    • 2006
  • A scanning electron microscope (SEM) is well known as a measurement and analysis equipment in nano technology, being widely used as a crucial one in measuring objects or analyzing chemical components. It is equipped with an electron optical system that consists of an electron beam source, electromagnetic lenses, and a detector. The present work concerns numerical analysis for the electron optical system so as to facilitate design of each component. Through the numerical analysis, we investigate trajectories of electron beams emitted from a nano-scale field emission tip, and compare the result with that of experimental observations. Effects of various components such as electromagnetic lenses and an aperture are also discussed.