• 제목/요약/키워드: Electro-hydrostatic Actuator

검색결과 31건 처리시간 0.025초

전기 정유압 구동기를 적용한 유압식 동력 조향 시스템 (A Hydraulic Power Steering System Based on Electro Hydrostatic Actuator)

  • 리쯔밍;이지민;박성환;김종식;박용호
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.86-94
    • /
    • 2011
  • In this paper, an electro hydraulic power steering system based on electro hydrostatic actuator (EHA) is proposed. A detailed steering model for the proposed electro hydraulic power steering system including mechanical and hydraulic subsystems is established. A conventional electro hydraulic power steering system is also modeled to evaluate the performance of the proposed power steering system such as responsiveness, assist force, command tracking and steering feel by computer simulation. From the computer simulation results, it is found that the proposed power steering system based on EHA has desirable performance.

비대칭 이중화 EHA의 유압 회로 설계 (Design of a Hydraulic Circuit for an Asymmetrically Dualized Electro-Hydrostatic Actuator)

  • 홍예선;김상석;김대현;김상범;박상준;최관호
    • 항공우주시스템공학회지
    • /
    • 제8권2호
    • /
    • pp.7-13
    • /
    • 2014
  • In order to enable fail-safe operation the electro-hydrostatic actuators can be dualized. When a symmetrical actuator is combined in series with an asymmetrical actuator with single rod cylinder, the flow rates of their cylinders are unmatched. If their position controller has same configuration, one of their pumps can supply too much flow rate under particular load conditions, which should be bypassed into low pressure side e.g. by a relief valve. In this paper it is shown how the hydraulic circuit for the asymmetrically combined electro-hydrostatic actuator can be designed without sacrificing power consumption.

Electro-Hydrostatic Actuator의 성능해석 (Performance Analysis of an Electro-Hydrostatic Actuator)

  • 김도현;김두만;홍예선
    • 한국항공우주학회지
    • /
    • 제35권4호
    • /
    • pp.316-322
    • /
    • 2007
  • 정유압 방식 EHA는 종래의 밸브 제어 방식 전기유압 구동장치와 전혀 다른 특성을 나타낸다. 본 논문에서는 EHA의 비선형 요소를 포함한 수학적 모델을 유도하고 실험적으로 검증하였다. 이 수학적 모델을 근거로 전기 모터로 구동되는 유압 펌프, 파이프 배관 그리고 유압 실린더로 구성되는 EHA의 시물레이션 모델을 개발하여 주요 설계 인자인 모터 토크의 피크치, 펌프의 관성 모멘트 등이 제어 성능에 미치는 영향을 분석하였다. 여기에서 실험 조건은 의도적으로 과도기에서 모터 토크가 포화되도록 선정하였다. 그 결과로서 최대 속도로 동작하는 EHA의 제어 정밀도를 개선하기 위한 설계 조건을 조사하였다.

정유압구동기(EHA)의 모델링과 제어기 설계 (Modeling and Controller Design of an Electro-Hydrostatic Actuator)

  • 허준영;김현호;이일영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, the Electro-Hydrostatic Actuator(EHA) has been developed as a result of research on energy saving. EHA is usually composed of a direct driven pump from an electric motor and is available to control cylinder displacement or velocity with high efficiency. In addition, it has the advantage of compactness, minimum leakage and availability of decentralized control. In this study, an EHA system was designed to decrease the path tracking error and manufactured for test. The linearization method provided in AMESim software was used to derive the model of EHA system. The derived model was applied to design the PI-D controller to effectively overcome the disturbance. The effectiveness of this controller was verified by further testing.

백스테핑제어기를 이용한 전기유압액추에이터의 위치제어 (Position control of Electro hydrostatic actuator (EHA) using a modified back stepping controller)

  • 도안녹치남;윤종일;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권3호
    • /
    • pp.16-22
    • /
    • 2012
  • Nowadays, electro hydrostatic actuator (EHA) has shown great advantages over the conventional hydraulic actuators with valve control system. This paper presents a position control for an EHA using a modified back stepping controller. The controller is designed by combining a backstepping technique and adaptation laws via special Lyapunov functions. The control signal consists of an adaptive control signal to compensate for the nonlinearities and a simple robust structure to deal with a bounded disturbance. Experiments are carried out to investigate the effectiveness of the proposed controller.

전기-정유압 구동기의 확장 상태 관측기 기반 비선형 서보 제어 (Extended-State-Observer-Based Nonlinear Servo Control of An Electro-Hydrostatic Actuator)

  • 전기호;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.61-70
    • /
    • 2017
  • In this study, an extended-state-observer (ESO) based non-linear servo control is introduced for an electro-hydrostatic actuator (EHA). Almost hydraulic systems not only are highly non-linear system that has mismatched uncertainties and external disturbances, but also can not measure some states. ESO that only use an output signal can be used to compensate these uncertainties and estimate unmeasurable states. To improve the position tracking performance, the barrier Lyapunov function (BLF) that can guarantee an output tolerance is introduced for the position tracking error signal of back stepping control procedures. Finally, the proposed servo control is compared with the proportional-integral (PI) control.

소형 외접기어펌프를 사용하는 EHA의 시스템 효율 분석 (Investigation of System Efficiency of an Electro-hydrostatic Actuator with an External Gear Pump)

  • 김종혁;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.15-21
    • /
    • 2019
  • In this study, the maximum system efficiency of the electro-hydrostatic actuators was experimentally investigated, where small size external gear pumps with volumetric displacement under 1.3 cc/rev were combined with a 400W servomotor as the prime mover. Since the efficiency data of the servomotor, gear pumps and hydraulic cylinder were not provided by the suppliers, experimental apparatuses for their efficiency measurement were extra built up. When a gear pump with a volumetric displacement of 1.27cc/rev was used on an electro-hydrostatic actuator system, the maximum system efficiency was not higher than 70%. This was because the most effective operation ranges of the motor and pump did not coincide each other. In order to match their operation ranges as one of the most crucial design factors, a speed reduction mechanism can be used, such as a timing belt. It was shown in the study that the maximum system efficiency could be increased from 70% to 76% in that way.

EHA(Electro-Hydrostatic Actuator) 위치제어 시스템의 모델링 및 제어 (Identification and Control of Position Control System for Electro-Hydraulic Actuator (EHA))

  • 박용호;박성환
    • 동력기계공학회지
    • /
    • 제15권2호
    • /
    • pp.69-77
    • /
    • 2011
  • In this paper, an optimal PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(ERA) systems with system uncertainties and saturation in the motor. An ERA prototype is developed and system modeling and parameter identification are executed. Then, optimal PID and optimal anti-windup PID controller are designed based on identified system model by using optimization toolbox in MA TLAB/Simulink and the performance of the two control systems are compared by experiment. It was found that the optimal anti-windup PID control system has better performance than the optimal anti-windup PID control system.

EHRA의 위치제어를 위한 적응 PID 제어기 설계 (Position control of an Electro-Hydrostatic Rotary Actuator using adaptive PID control)

  • 하태욱;전기호;응우엔 민 찌;한성민;신정우;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.37-44
    • /
    • 2017
  • This paper introduces a control algorithm for trajectory control of an electro-hydrostatic rotary actuator. A key feature of this paper is that an adaptive PID based on sliding mode is used to control the nonlinearity and uncertainty factor of single input/output system. Accurate knowledge of rotary actuator angle can result in high-performance and efficiency of electro hydraulic system. First, the position control is formulated using the adaptive PID with sliding mode technique and uncertainties in the hydraulic system. Second, the controller can update the PID gains on-line based on error caused by external disturbance and uncertain factors in the system. Finally, three experimental cases were studied to evaluate the proposed control method.

편로드 실린더 구동 EHA의 유압 회로 개선 (Improvement of a Hydraulic Circuit for an Electro-Hydrostatic Actuator Equipped with a Single Rod Cylinder)

  • 홍예선;김상석;김대현;김상범;박상준;최관호
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.1-6
    • /
    • 2014
  • The conventional hydraulic circuits for electro-hydrostatic actuators equipped with a single-rod cylinder can oscillate under overrunning load conditions. In this paper the oscillation problem encountered in the conventional hydraulic circuits for EHAs is analyzed and it is shown by simulation results that this problem can be solved by employing a counter balance valve instead of a pilot-operated check valve generally used in the conventional hydraulic circuits.