• Title/Summary/Keyword: Electro-Optical Payload

Search Result 43, Processing Time 0.019 seconds

Study on the Thermal Buffer Mass and Phase Change Material for Thermal Control of the Periodically Working Satellite Component (주기적으로 작동하는 위성부품 열제어용 열적완충질량과 이를 대체할 상변화물질을 이용한 열제어부품의 비교연구)

  • Kim, Taig Young;Seo, Jung Gi;Hyun, Bum-Seok;Cheon, Hyeong Yul;Lee, Jang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1013-1019
    • /
    • 2014
  • Solid-liquid Phase Change Material(PCM) as a thermal control hardware for the electro-optical payload of low earth orbit satellite is numerically studied which can be substituted with Thermal Buffer Mass(TBM). The electro-optical module in LEO satellite is periodically work and high heat is dissipated during the imaging period, however, the design temperature range is very tight and sensitive. In order to handle this problem TBM is added and as a result the time constant of the module temperature increases. TBM is made of Al6010 and its mass directly affects the system design. To save the mass PCM is suggested in this study. The latent heat of melting or solidification is very high and small amount of PCM can play a role instead of TBM. The result shows that only 12% of TBM mass is enough to control the module temperature using PCM.

Feasibility on Generating Topographic Map Using KOMPSAT (다목적 실용위성(KOMPSAT)을 이용한 지형도 제작의 가능성 분석)

  • 조우석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.281-289
    • /
    • 1998
  • Korea is developing a Korea Multi-Purpose Satellite I (KOMPSAT-1) as one of Korea National Space Program, which will be launched in 1999. The EOC (Electro-Optical Camera) is the primary payload for KOMP-SAT-1. The main mission of EOC is to provide the images for the production of scale maps of Korean territory. This research is focused on methodology and possibility for the production of topographic maps using EOC sensor. Since the imagery from EOC is not yet available, SPOT Level 1A image data which are quite similar to those of EOC, and Intergraph Imagestation (Digital Photogrammetric Workstation) are implemented in the process of sample digital map generation. The sample digital maps generated from SPOT stereoimages were compared and analyzed with the existing 1:50,000 scale digital map produced by National Geography Institute. The feasibility and problem encountered in 1:50,000 scale digital mapping using SPOT stereoimages were presented. Based on results, the feasibility and further research areas for KOMPSAT-EOC in the line of 1:25,000 and 1;50,000 digital mapping were discussed.

  • PDF

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.