• Title/Summary/Keyword: Electro-Optical Image

Search Result 121, Processing Time 0.027 seconds

Image Quality Evaluation and Tolerance Analysis for Camera Lenses with Diffractive Element

  • Lee, Sang-Hyuck;Jeong, Ho-Seop;Jin, Young-Su;Song, Seok-Ho;Park, Woo-Je
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.105-111
    • /
    • 2006
  • A novel image quality evaluation method, which is based on combination of the rigorous grating diffraction theory and the ray-optic method, is proposed. It is applied for design optimization and, tolerance analysis of optical imaging systems implementing diffractive optical elements (DOE). The evaluation method can predict the quality and resolution of the image on the image sensor plane through the optical imaging system. Especially, we can simulate the effect of diffraction efficiencies of DOE in the camera lenses module, which is very effective for predicting different color sense and MTF performance. Using this method, we can effectively determine the fabrication tolerances of diffractive and refractive optical elements such as the variations' in profile thickness, and the shoulder of the DOE, as well as conventional parameters such as decenter and tilt in optical-surface alignments. A DOE-based 2M-resolution camera lens module designed by the optimization process based on the proposed image quality evaluation method shows ${\sim}15%$ MTF improvement compared with a design without such an optimization.

Haze Removal of Electro-Optical Sensor using Super Pixel (슈퍼픽셀을 활용한 전자광학센서의 안개 제거 기법 연구)

  • Noh, Sang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.634-638
    • /
    • 2018
  • Haze is a factor that degrades the performance of various image processing algorithms, such as those for detection, tracking, and recognition using an electro-optical sensor. For robust operation of an electro-optical sensor-based unmanned system used outdoors, an algorithm capable of effectively removing haze is needed. As a haze removal method using a single electro-optical sensor, the dark channel prior using statistical properties of the electro-optical sensor is most widely known. Previous methods used a square filter in the process of obtaining a transmission using the dark channel prior. When a square filter is used, the effect of removing haze becomes smaller as the size of the filter becomes larger. When the size of the filter becomes excessively small, over-saturation occurs, and color information in the image is lost. Since the size of the filter greatly affects the performance of the algorithm, a relatively large filter is generally used, or a small filter is used so that no over-saturation occurs, depending on the image. In this paper, we propose an improved haze removal method using color image segmentation. The parameters of the color image segmentation are automatically set according to the information complexity of the image, and the over-saturation phenomenon does not occur by estimating the amount of transmission based on the parameters.

Digital Image Simulation of Electro-Optical Camera(EOC) on KOMPSAT-1

  • Shim, Hyung-Sik;Yong, Sang-Soo;Heo, Haeng-Pal;Lee, Seung-Hoon;Oh, Kyoung-Hwan;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.349-354
    • /
    • 1999
  • Electro-Optical Camera (EOC) is the main payload of the KOMPSAT-1 satellite to perform the mission of cartography that builds up a digital map of Korean territory including a digital terrain elevation map. This paper discusses the issues of the digital image simulation of EOC for the generation of EOC simulated scene as taken by EOC at 685km altitude on orbit. For the purpose, simulation work has been performed with the sensor models of EOC and the satellite platform motions models through image chain analysis from the illumination source (Sun) to a simulated image output in digital number. MODTRAN fur radiance calculation, MTF models of optics, detector and motions of EOC for system point spread function (PSF), and signal chain equations for digital number output are described. Several noise models of EOC are also considered. The final output is the EOC simulated image in digital number. The simulation technique can be used in several phase of a spaceborne electro-optical system development project, feasibility study phase, design, manufacturing, test phases, ground image processing phases, and so on.

  • PDF

Micro-optics Components for Liquid Crystal Displays Applications

  • Shieh, Han Ping D.;Huang, Yi Pai;Chien, Ko Wei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.379-382
    • /
    • 2004
  • Microoptics has become the key technology in liquid crystal display systems due to its capabilities of miniaturization and design flexibility. We successfully demonstrate five different microoptical components for enhancing the image quality, providing better functions, increasing light efficiency, and generating 3D images in LCD applications.

  • PDF

Optical Design of an Image-space Telecentric Two-mirror System for Wide-field Line Imaging

  • Lee, Jong-Ung;Kim, Youngsoo;Kim, Seo Hyun;Kim, Yeonsoo;Kim, Hyunsook
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.344-350
    • /
    • 2017
  • We present a new design approach and an example design for an image-space telecentric two-mirror system that has a fast f-number and a wide-field line image. The initial design of the telecentric mirror system is a conventional axially symmetric system, consisting of a flat primary mirror with fourth-order aspheric deformation and an oblate ellipsoidal secondary mirror to correct spherical aberration, coma, and field curvature. Even though in the optimized design the primary mirror is tilted, to avoid ray obstruction by the secondary mirror, the image-space telecentric two-mirror system shows quite good imaging performance, for a line imager.

SNR Analysis for Practical Electro-Optical Camera System

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.633-636
    • /
    • 2005
  • An electro-optical camera system consists of many subsystems such as the optics, the detector, and the electronics and so on. They may create variations in the processed image that were not present original scene. The performance analysis of the electro-optical camera system is a mathematical construct that provides an optimum design through appropriate trade off analysis. The SNR(Signal to Noise Ratio) is one of the most important performance for the electro-optical camera system. The SNR analysis shown in this paper is performed based on the practical high resolution satellite camera design. For the purpose of the practical camera design, the analysis assumes that the defined radiance, which is calculated for the Korean peninsula, reached directly to the telescope entrance. In addition, the actual operation concept such as integration time and the normal operation altitude is assumed. This paper compares the SNR analysis results according to the various camera characteristics such as the optics, the detector, and the camera electronics. In detail, the optical characteristics can be split into the focal length, F#, transmittance, and so on. And the system responsivity, the quantum efficiency, the TDI stages, the quantization noise and the analogue noise can be used for the detector and the camera electronics characteristics. Finally this paper suggests the optimum design to apply the practical electro-optical system.

  • PDF

Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching

  • Kang, Hyungseok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.545-555
    • /
    • 2020
  • This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.

LOS Moving Algorithm Design of Electro-Optical Targeting Pod for Joystick Command (조이스틱 명령에 따른 Electro-Optical Targeting Pod의 LOS 이동 알고리즘 설계)

  • Seo, Hyoungkyu;Park, Jaeyoung;Ahn, Jung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1395-1400
    • /
    • 2018
  • EO TGP(Electro-Optical Targeting Pod) is an optical tracking system which has various functions such as target tracking and image stabilization and LOS(Line of Sight) change. Especially, it is very important to move the LOS into a interest point for joystick command. When pilot move joystick in order to observe different scene, EO TGP gimbals should be operated properly. Generally, most EOTS just operate corresponding gimbal for joystick command. For example, if pilot input horizontal command in order to observe right hand screen, it just drive azimuth gimbal at any position. But in the screen, the image dosen't move in a horizontal direction because gimbal structure is Euler angle. And image rotation is occurred by elevation gimbal angle. So we need to move Pitch gimbal. So in the paper, we designed LOS moving algorithm which convert LOS command to gimbal velocity command to move LOS properly. We modeled a differential kinematic equation and then change the joystick command into velocity command of gimbals. This algorithm generate velocity command of each gimbal for same horizontal direction command. Finally, we verified performance through MATLAB/Simulink.

Image Tracking Interference Minimize of Electro Optical Tracking System by MgF2 Nano Structure Antireflective Coating Films (MgF2 나노구조 반사방지막을 통한 함정용 전자광학추적장비 영상추적간섭 최소화)

  • Shim, Bo-Hyun;Jo, Hee-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.206-213
    • /
    • 2015
  • An omni-directional, graded-index and textured ZnO nanorods with $MgF_2$ anti-reflective(AR) coating films for the electro optical tracking system(EOTS) by e-beam evaporation method are presented. we achieved that the graded index structure can minimize image tracking interference of EOTS which is comparable to a general AR coating films. Optimized ZnO nanorods with $MgF_2$ AR coating films lead to decreasing Fresnel reflection by gradient refractive index. According to our experiment results, ZnO nanorods with $MgF_2$ AR coating films can be used for various electro optical system to improve the optical performance.