• Title/Summary/Keyword: Electro Magnetic (EM)

Search Result 53, Processing Time 0.025 seconds

ANALYSES OF ANNULAR LINEAR INDUCTION PUMP CHARACTERISTICS USING A TIME-HARMONIC FINITE DIFFERENCE ANALYSIS

  • Seong, Seung-Hwan;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.213-224
    • /
    • 2008
  • The pumping of coolant in a liquid metal fast reactor may be performed with an annular linear induction electro-magnetic (EM) pump. Linear induction pumps use a traveling magnetic field wave created by poly-phase currents, and the induced currents and their associated magnetic field generate a Lorentz force, whose effect can be the pumping of the liquid metal. The flow behaviors in the pump are very complex, including a time-varying Lorentz force and pressure pulsation, because an induction EM pump has time-varying magnetic fields and the induced convective currents that originate from the flow of the liquid metal. These phenomena lead to an instability problem in the pump arising from the changes of the generated Lorentz forces along the pump's geometry. Therefore, a magneto-hydro-dynamics (MHD) analysis is required for the design and operation of a linear induction EM pump. We have developed a time-harmonic 2-dimensional axisymmetry MHD analysis method based on the Maxwell equations. This paper describes the analysis and numerical method for obtaining solutions for some MHD parameters in an induction EM pump. Experimental test results obtained from an induction EM pump of CLIP-150 at the STC "Sintez," D.V. Efremov Institute of Electro-physical Apparatus in St. Petersburg were used to validate the method. In addition, we investigated some characteristics of a linear induction EM pump, such as the effect of the convective current and the double supply frequency (DSF) pressure pulsation. This simple model overestimated the convective eddy current generated from the sodium flow in the pump channel; however, it had a similar tendency for the measured data of the pump performance through a comparison with the experimental data. Considering its simplicity, it could be a base model for designing an EM pump and for evaluating the MHD flow in an EM pump.

The study of the Electro Magnetic Acceleration and Deceleration system of the Ferromagnetic Ball using the Monopole Coil Structure

  • Chung, Byung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.95-98
    • /
    • 2010
  • The Electro Magnetic (EM) Acceleration and Deceleration (ACC/DCC) system of the Ferromagnetic Ball(FB) is the linear motor's final structural development which can be used for devices that conserve energy, gaming or rail gun. By accelerating the FB within the coil structure, it is difficult to utilize the FB's magnetizing feature via the ACC/DCC system. There is much monopole space inside the monopole coil. By using this particular feature of the FB, starting coil and Monopole Coil Structure (MCS) can be structurally separated and another simple electric related control system can be experimented for further development. For the purpose of development a review is needed of the control system of both basic stepper motor and BLDC motor.

An Electro-magnetic Air Spring for Vibration Control in Semiconductor Manufacturing (반도체 생산에서 진동 제어를 위한 전자기 에어 스프링)

  • Kim, Hyung-Tae;Kim, Cheol-Ho;Lee, Kang-Won;Lee, Gyu-Seop;Son, Sung-Wan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1128-1138
    • /
    • 2010
  • One of the typical problems in the precise vibration is resonance characteristics at low frequency disturbance due to a heavy mass. An electro-magnetic(EM) air spring is a kind of vibration control unit and active isolator. The EM air spring in this study aims at removing the low frequency resonance for semiconductor manufacturing. The mechanical and electronic parts in the active isolator are designed to operate under a weight of 2.5 tons. The EM spring is floated using air pressure in a pneumatic elastic chamber and actuated by EM levitation force. The actuator consists of a EM coil and a permanent magnetic plate which are installed inside of the chamber. An air mount was constructed for the experiment with a stone surface plate, 4 active air springs, 4 gap sensors, a DSP controller, and a multi-channel power amp. A PD control method and operating logic was applied to the DSP. Simulation using 1/4 model was carried out and compared with the experiments. The time duration and maximum peak at resonance frequency can be reduced sharply by the proposed system. The results show that the active system can avoid the resonance caused by the natural frequency of the passive system.

CONTROL PERFORMANCE IMPROVEMENT OF AN EMV SYSTEM USING A PM/EM HYBRID ACTUATOR

  • Ahn, H.J.;Chang, J.U.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.429-436
    • /
    • 2007
  • In this study, we improved control performance of an EMV (electromechanical valve) system using a PM/EM (permanent magnet/electromagnet) hybrid EMA (electromagnetic actuator) and showed the feasibilities of both soft landing and fast transition of the EMV system using a simple PID control. The conventional EMV systems using only EM show significant nonlinear characteristics. Therefore, it is very difficult to control the valve position and several complex control schemes are used. This paper focused on the control performance improvement using a PM/EM hybrid actuator. In particular, a PM is used as a key design parameter such as a bias current of a magnetic bearing in order to improve the linear characteristic of the actuator, although most PM/EM hybrid actuators use a PM as a power saver during valve-open and -closed states. First, a FE (finite element) analysis was performed to confirm its linear static force characteristics. Then, both a test rig and a valve control system were built in order to prove experimentally the control performance improvement of the actuator. Finally, feasibilities of both soft landing and fast transition of the system were shown experimentally through gain-scheduled PID (proportional derivative integral) control.

Development of 3-Dimensional Sensor Nodes using Electro-magnetic Waves for Underwater Localization (수중 위치 추정을 위한 3차원 전자기파 센서 노드 개발)

  • Kwak, Kyung Min;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • In this paper, we discuss a 3-dimensional localization sensor node using EM waves (Electromagnetic waves) with RSSI (Received Signal Strength Indicator). Generally EM waves cannot be used in underwater environment, because the signal is highly attenuated by the water medium according to the distance. Although the signal quickly reduces in underwater, the reducing tendency is very clear and uniform. Hence EM waves have possibility as underwater distance sensors. The authors have verified the possibility by theory and several experiments, and developed calibration methods in case of linear and planer environment. For 3-dimensional localization in underwater, it must be known antenna's radiation pattern property in electric plane(called E-plane). In this paper, we proceed experiments to verify attenuation tendency with z axis movement, PLF (Polarization Loss Factor) and ILF (Inclination Loss Factor) with its theoretical approach.

Generation of ISAR Image for Realistic Target Model Using General Purpose EM Simulators (범용 전자기파 시뮬레이터를 이용한 사실적 표적 모델에 대한 역합성 개구면 레이다 영상 합성)

  • Kim, Seok;Nikitin, Konstantin;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.189-195
    • /
    • 2015
  • There are many research works on the SAR image generation using EM(Electro Magnetic) simulation. Particularly, there are several dedicated S/Ws for SAR image generation and analysis. But, most of them are not available to the public due to the reason for defense and security. In this paper, we describe the generation of ISAR images for a realistic target model using the general purpose EM simulator like FEKO. This method can benefit us many advantages like building the database of many targets for target recognition with cost-and-time effective way.

A Fast Crosshole Electromagnetic Tomography Using Localized Nonlinear Approximation

  • Kim, Hee-Joon;Lee, Ki-Ha;Mike-Wilt
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.150-153
    • /
    • 2003
  • High-resolution imaging of electrical conductivity has been the subject of many studies in crosshole tomography using electromagnetic (EM) fields (Zhou et al., 1993; Wilt et al., 1995; Alumbaugh and Morrison, 1995; Newman, 1995; Alumbaugh and Newman, 1997). Although the theoretical understanding and associated field practices for crosshole EM methods are relatively mature, fast and stable imaging of crosshole EM data is still a challenging problem. (omitted)

  • PDF

Compact Wilkinson Power Combiner Design and Electro Magnetic Simulation Using IPD Technology (IPD 기술을 이용한 Wilkinson 전력결합기 설계 및 전기장 시뮬레이션)

  • Cho, Sung-Jin;Wang, Cong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.46-47
    • /
    • 2009
  • In this paper, a power combiner using IPD process for SK Telecom 3-Generation (2.13 ~ 2.15 GHz) application. The Integrated Passive Device (IPD) Wilkinson power Combiner shows compact size and high performance. It is simulated by 3D Electro Magnetic (EM) simulation because of more accurate measurement result wire-bonding effects. This combiner exhibit size of $1.2mm^2$ the insertion loss of 3.6 dB, and the return loss of 10.1 dB, and isolation of more than -7.7 dB.

  • PDF

A New Design of Trisection Band-Pass Filter Based on Electromagnetic Simulation (EM 시뮬레이션을 기반으로 한 트라이섹션 대역 통과 여파기의 새로운 설계)

  • Kim, So-Su;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1086-1096
    • /
    • 2011
  • In this paper, we present the trisection band-pass filter with a transmission zero at 2.63 GHz, which has a center frequency of 2.44 GHz, relative bandwidth of 5 %, and return loss of 18 dB, based on a multi-port ElectroMagnetic simulation. The coupling matrix for the trisection filter is calculated and this filter is transformed into band-pass filter prototype through a lossless 2-port circuit transformation. The J-inverter values and slope parameters of each individual resonator are computed using an EM simulation Y-parameters of the filter with multi port. The dimensions of desired filter are determined by matching the computed J-inverter and susceptance slope parameters to those of the prototype band-pass filter. Undesired cross-couplings are found to occur which does not appear in the prototype trisection filter. To overcome the problem of undesired couplings, the filter was optimized to satisfy the same frequency response of prototype filter. The validity of the proposed design method was verified through the implementation of the designed and optimized filter.

Hybrid Damage Detection in Prestressed Concrete Girder Bridges (프리스트레스트 콘크리트 거더교의 하이브리드 손상 검색)

  • Hong, Dong-Soo;Lee, Jung-Mi;Na, Won-Bae;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.669-674
    • /
    • 2007
  • To develop a promising hybrid structural health monitoring (SHM) system, a combined use of structural vibration and electro-mechanical (EM) impedance is proposed. The hybrid SHM system is designed to use vibration characteristics as global index and EM impedance as local index. The proposed health monitoring scheme is implemented into prestressed concrete (PSC) girder bridges for which a series of damage scenarios are designed to simulate various prestress-loss situations at which the target bridges car experience during their service life. The measured experimental results, modal parameters and electro-magnetic impedance signatures, are carefully analyzed to recognize the occurrence of damage and furthermore to indicate its location.

  • PDF