• Title/Summary/Keyword: Electro Impedance

Search Result 182, Processing Time 0.024 seconds

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

The Effects of Different Surface Level on Muscle activity of the Upper Body and Exercise Intensity during Mountain Climbing Exercise (지면에서의 마운틴 클라이밍 운동 시 상체의 위치 변화가 운동 강도와 근활성도에 미치는 영향)

  • Park, Jun-Ho;Jung, Jae-Hu;Kim, Jong-Geun;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.72-78
    • /
    • 2021
  • Objective: The purpose of this study was to investigate relations and effectiveness about mountain climbling exercise with different level of support surfaces by analyzing heart rate and EMG data. A total of 10 male college students with no musculoskeltal disorder were recruited for this study. Method: The biomechanical analysis was performed using heart rate monitor (Polar V800, Polar Electro Oy, Finland), step-box, exercise mat, and EMG device (QEMG8, Laxtha Inc. Korea, sampling frequency = 1,024 Hz, gain = 1,000, input impedance > 1012 Ω, CMRR > 100 dB). In this research, step-box were used to create different surface levels on the upper body (flat surface, 10% of subject's height, 20% of subject's height, and 30% of subject's hight). Based on these different conditions, data was collected by performing mountain climbing exercise during 30 seconds. Subjects were given 5 minutes of break to prevent muscular fatigue after each exercise. For each dependent variable, a one-way analysis of variance with repeated measures was conducted to find significant differences and Bonferroni post-hoc test was performed. Results: The results of this study showed that exercise intensity was reduced statistically as increased surface level on the upper body. Muscle activity of the upper rectus abdominis and biceps femoris for 30% of surface level was significantly higher than the corresponding values for flat surface. However, the opposite was found in the rectus femoris. In general, muscle activity of the lower rectus abdominis, erector spinae, external oblique abdominis, and gluteus maximus increased when surface level increased, but the differences were not significant. Conclusion: As a result, the increase in surface level of the body would change muscle activity of the upper body, indicating that different surface level of the upper body may cause significant effect on particular muscles to be more active during mountain climbing exercise. Based on results of this study, it is suggested to set up an appropriate surface level to target particular muscle to expect an effective training. It is also important to set adequate surface levels to create an effective training condition for preventing exercise injuries.