• Title/Summary/Keyword: Electricity demand forecasting

Search Result 78, Processing Time 0.024 seconds

Econometric Study on Forecasting Demand Response in Smart Grid (스마트그리드 수요반응 추정을 위한 계량경제학적 방법에 관한 연구)

  • Kang, Dong Joo;Park, Sunju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.133-142
    • /
    • 2012
  • Cournot model is one of representative models among many game theoretic approaches available for analyzing competitive market models. Recent years have witnessed various kinds of attempts to model competitive electricity markets using the Cournot model. Cournot model is appropriate for oligopoly market which is one characteristic of electric power industry requiring huge amount of capital investment. When we use Cournot model for the application to electricity market, it is prerequisite to assume the downward sloping demand curve in the right direction. Generators in oligopoly market could try to maximize their profit by exercising the market power like physical or economic withholding. However advanced electricity markets also have demand side bidding which makes it possible for the demand to respond to the high market price by reducing their consumption. Considering this kind of demand reaction, Generators couldn't abuse their market power. Instead, they try to find out an equilibrium point which is optimal for both sides, generators and demand. This paper suggest a quantitative analysis between market variables based on econometrics for estimating demand responses in smart grid environment.

Deep Learning Based Short-Term Electric Load Forecasting Models using One-Hot Encoding (원-핫 인코딩을 이용한 딥러닝 단기 전력수요 예측모델)

  • Kim, Kwang Ho;Chang, Byunghoon;Choi, Hwang Kyu
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.852-857
    • /
    • 2019
  • In order to manage the demand resources of project participants and to provide appropriate strategies in the virtual power plant's power trading platform for consumers or operators who want to participate in the distributed resource collective trading market, it is very important to forecast the next day's demand of individual participants and the overall system's electricity demand. This paper developed a power demand forecasting model for the next day. For the model, we used LSTM algorithm of deep learning technique in consideration of time series characteristics of power demand forecasting data, and new scheme is applied by applying one-hot encoding method to input/output values such as power demand. In the performance evaluation for comparing the general DNN with our LSTM forecasting model, both model showed 4.50 and 1.89 of root mean square error, respectively, and our LSTM model showed high prediction accuracy.

Double Encoder-Decoder Model for Improving the Accuracy of the Electricity Consumption Prediction in Manufacturing (제조업 전력량 예측 정확성 향상을 위한 Double Encoder-Decoder 모델)

  • Cho, Yeongchang;Go, Byung Gill;Sung, Jong Hoon;Cho, Yeong Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.419-430
    • /
    • 2020
  • This paper investigated methods to improve the forecasting accuracy of the electricity consumption prediction model. Currently, the demand for electricity has continuously been rising more than ever. Since the industrial sector uses more electricity than any other sectors, the importance of a more precise forecasting model for manufacturing sites has been highlighted to lower the excess energy production. We propose a double encoder-decoder model, which uses two separate encoders and one decoder, in order to adapt both long-term and short-term data for better forecasts. We evaluated our proposed model on our electricity power consumption dataset, which was collected in a manufacturing site of Sehong from January 1st, 2019 to June 30th, 2019 with 1 minute time interval. From the experiment, the double encoder-decoder model marked about 10% reduction in mean absolute error percentage compared to a conventional encoder-decoder model. This result indicates that the proposed model forecasts electricity consumption more accurately on manufacturing sites compared to an encoder-decoder model.

SMP Forecasting Using Artificial Neural Networks (신경 회로망을 이용한 계통 한계비용 예측)

  • Lee, Jeong-Kyu;Kim, Min-Soo;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.389-391
    • /
    • 2002
  • This paper presents the System Marginal Price(SMp) forecasting implementation using backpropagation Neural Networks in Competitive Electricity Market. SMP is very important term to seek the maximum profit to bidding participants. Demand and SMP that necessary data for training Neural Networks, supplied from Korea Power Exchange(KPX). Statistic analysis about predicted SMP presents a part of consideration in end of this paper.

  • PDF

A Study on the Estimation of Electricity Demand for Heating and Cooling using Cross Temperature Response Function (교차기온반응함수로 추정한 전력수요의 냉난방 수요 변화 추정)

  • Park, Sung Keun;Hong, Soon Dong
    • Environmental and Resource Economics Review
    • /
    • v.27 no.2
    • /
    • pp.287-313
    • /
    • 2018
  • This paper measures and analyzes cooling and heating demand in Korean electricity demand using time-varying temperature response functions and cooling and heating temperature effects. We fit the model to Korean data for residential and commercial sector over 1999:01~2016:12 and the estimation results show that the growth rate of heating demand is much higher than that of base and cooling demand, and especially the growth rate of heating demand in commercial sector is much higher. And we define the temperature-normalized demand conditioning that monthly temperatures are assumed as average monthly temperatures. The growth rate of heating demand in the estimated temperature-normalized demand is higher than that in the real demand. Our results are expected to be a base data for Winter Demand Management and short-term electricity demand forecasting.

Statistical Modeling for Forecasting Maximum Electricity Demand in Korea (한국 최대 전력량 예측을 위한 통계모형)

  • Yoon, Sang-Hoo;Lee, Young-Saeng;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.127-135
    • /
    • 2009
  • It is necessary to forecast the amount of the maximum electricity demand for stabilizing the flow of electricity. The time series data was collected from the Korea Energy Research between January 2000 and December 2006. The data showed that they had a strong linear trend and seasonal change. Winters seasonal model, ARMA model were used to examine it. Root mean squared prediction error and mean absolute percentage prediction error were a criteria to select the best model. In addition, a nonstationary generalized extreme value distribution with explanatory variables was fitted to forecast the maximum electricity.

RNN NARX Model Based Demand Management for Smart Grid

  • Lee, Sang-Hyun;Park, Dae-Won;Moon, Kyung-Il
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.2
    • /
    • pp.11-14
    • /
    • 2014
  • In the smart grid, it will be possible to communicate with the consumers for the purposes of monitoring and controlling their power consumption without disturbing their business or comfort. This will bring easier administration capabilities for the utilities. On the other hand, consumers will require more advanced home automation tools which can be implemented by using advanced sensor technologies. For instance, consumers may need to adapt their consumption according to the dynamically varying electricity prices which necessitates home automation tools. This paper tries to combine neural network and nonlinear autoregressive with exogenous variable (NARX) class for next week electric load forecasting. The suitability of the proposed approach is illustrated through an application to electric load consumption data. The suggested system provides a useful and suitable tool especially for the load forecasting.

Infrastructure Asset Management System Methodologies for Infrastructure Asset Management System in U.S.

  • Lee Sang-Youb;Chung Seung-Hyun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.67-72
    • /
    • 2003
  • Infrastructure asset management is a methodology for programming infrastructure capital investments and adjusting infrastructure service provision to fulfil established performance, considering the life-cycle perspective of infrastructure. In this study, the methodologies for infrastructure asset management system implemented in sewer management system, bridge management system, pavement and highway management system, and embankment dam management system are described with focus on the system in U.S. As the major methodology to support the decision-making for asset mangers to better allocate the limited funds to the area needing it the most. various demand forecasting methodologies used in wastewater, water, transportation, electricity, and construction are also introduced for their applicability towards infrastructure asset management.

  • PDF

전력산업 인력수급 예측모형 개발 연구

  • Lee, Yong-Seok;Lee, Geun-Jun;Gwak, Sang-Man
    • Proceedings of the Korean System Dynamics Society
    • /
    • 2006.04a
    • /
    • pp.101-122
    • /
    • 2006
  • A series of system dynamics model was developed for forecasting demand and supply of human resource in the electricity industry. To forecast demand of human resource in the electric power industry, BLS (Bureau of Labor Statistics) methodology was used. To forecast supply of human resource in the electric power industry, forecasting on the population of our country and the number of students in the department of electrical engineering were performed. After performing computer simulation with developed system dynamics model, it is discovered that the shortage of human resource in the electric power industry will be 3,000 persons per year from 2006 to 2015, and more than a double of current budget is required to overcome this shortage of human resource.

  • PDF

Forecasting daily peak load by time series model with temperature and special days effect (기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jin Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.161-171
    • /
    • 2019
  • Varied methods have been researched continuously because the past as the daily maximum electricity demand expectation has been a crucial task in the nation's electrical supply and demand. Forecasting the daily peak electricity demand accurately can prepare the daily operating program about the generating unit, and contribute the reduction of the consumption of the unnecessary energy source through efficient operating facilities. This method also has the advantage that can prepare anticipatively in the reserve margin reduced problem due to the power consumption superabundant by heating and air conditioning that can estimate the daily peak load. This paper researched a model that can forecast the next day's daily peak load when considering the influence of temperature and weekday, weekend, and holidays in the Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, and NNETAR model. The results of the forecasting performance test on the model of this paper for a Seasonal Reg-ARIMA model and NNETAR model that can consider the day of the week, and temperature showed better forecasting performance than a model that cannot consider these factors. The forecasting performance of the NNETAR model that utilized the artificial neural network was most outstanding.