• 제목/요약/키워드: Electricity Storage

검색결과 273건 처리시간 0.021초

가정용 태양광/ESS 통합 스마트 PCS 개발 (Development of Smart PCS(Power Conditioning System) Integrating PV/ESS for Home)

  • 이상학
    • 디지털융복합연구
    • /
    • 제14권7호
    • /
    • pp.193-200
    • /
    • 2016
  • 최근 들어 가정 내 태양광과 에너지저장시스템을 도입하여 에너지 자립도를 높이고자 하는 기술 개발이 활발히 이루어지고 있다. 낮에 생산된 전기를 에너지 저장 시스템에 충전해 두고 전기요금이 높을 때 사용함으로써 효율적인 에너지 관리를 수행할 수 있다. 국내에서는 아직까지 가정용 실시간 요금제가 이루어지고 있지 않지만 누진제 상의 일정 목표까지 전기 사용량을 낮출 수 있다. 가정 내 태양광을 도입하기 위해서는 전력 변환장치인 PCS를 필요로 한다. PCS는 직류로 생산된 전력을 교류로 변환하여 사용하고 에너지 저장 시스템의 충방전을 수행하도록 한다. 에너지 자립형 스마트 홈 시스템은 태양광, 에너지저장시스템에 대한 일반인들의 관심이 높아지면서 해외를 중심으로 시장이 형성되는 단계이다. 본 논문의 결과물은 실환경에 설치되어 검증을 수행하였으며 실시간 요금제를 가정하여 에너지 절감 효과를 분석하였다.

에너지 저장 시스템의 전력계통 적용 사례 분석 (A Study on the Application Cases Analysis of ESS(Energy Storage System) to Electric Power System)

  • 고윤석
    • 한국전자통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.53-58
    • /
    • 2016
  • 지구 온난화, 고유가 그리고 심각한 전력난 문제를 해소하기 위해, 가정용 전기요금 누진제 적용과 함께 산업용 전기요금의 지속적인 상승이 이루어지고 있어 에너지 이용 효율을 크게 개선할 수 있는 에너지 저장 시스템을 스마트 그리드에 적용하기 위한 노력들이 새롭게 시도되고 있다. 본 연구에서는 에너지 저장 장치로 활용될 수 있는 리튬이온 전지의 구성 및 동작원리, 에너지 저장 시스템의 전력계통 적용 분야, 배터리 에너지 컨버터 기술, 그리고 적용사례를 연구함으로서 에너지 저장 시스템을 전력계통에 적용하는 데 필요한 기반 기술을 확립한다.

전력소비자 수요관리용 전지전력저장시스템의 적정 가격 산정 (Estimation of Reasonable Price of Battery Energy Storage System for Electricity Customers Demand Management)

  • 김슬기;조경희;김종율;김응상
    • 전기학회논문지
    • /
    • 제62권10호
    • /
    • pp.1390-1396
    • /
    • 2013
  • The paper estimated the reasonable market price of lead-acid battery energy storage system (BESS) intended for demand management of electricity customers. As time-of-use (TOU) tariffs have extended to a larger number of customers and gaps in the peak and off-peak rates have gradually risen, deployment of BESS has been highly needed. However, immature engineering techniques, lack of field experiences and high initial investment cost have been barriers to opening up ESS markets. This paper assessed electricity cost that BESS operation could save for customers and, based on the possible cost savings, estimated reasonable prices at which BESSs could become a more prospective option for demand management of customers. Battery scheduling was optimized to maximize the electricity cost savings that BESS would possibly achieve under TOU tariffs conditions. Basic economic factors such as payback period and return on investment were calculated to determine reasonable market prices. Actual load data of 12 industrial customers were used for case studies.

Energy Consumption Scheduling in a Smart Grid Including Renewable Energy

  • Boumkheld, Nadia;Ghogho, Mounir;El Koutbi, Mohammed
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.116-124
    • /
    • 2015
  • Smart grids propose new solutions for electricity consumers as a means to help them use energy in an efficient way. In this paper, we consider the demand-side management issue that exists for a group of consumers (houses) that are equipped with renewable energy (wind turbines) and storage units (battery), and we try to find the optimal scheduling for their home appliances, in order to reduce their electricity bills. Our simulation results prove the effectiveness of our approach, as they show a significant reduction in electricity costs when using renewable energy and battery storage.

양수발전의 비시장 가치 추정 (Estimation of the Economic Value of Pumped Storage Power Generation in Korea)

  • 원두환
    • 아태비즈니스연구
    • /
    • 제13권1호
    • /
    • pp.263-275
    • /
    • 2022
  • Purpose - This study estimated the non-market value of pumped storage power generation using the contingent valuation method(CVM). Design/methodology/approach - CVM, a non-market value estimation method, was used. The perception of pumped storage power generation and the willingness to pay(WTP) for pumped storage power generation were investigated among 612 randomly selected households. Findings - It was analyzed that the average value per household was 7309.99 won/month, and the sources of these benefits were 1819.37 won due to the improvement of power generation efficiency, 1320.48 won due to the improvement of power system reliability, 2359.24 won due to the stabilization of electricity rates, 2110.89 won due to water resource management It was assumed that a circle occurred. If the average monthly benefit per household is expanded to cover countries across the country, it is estimated that the annual value to our society from pumped storage power generation will be KRW 1.796.6 trillion. Research implications or Originality - It is necessary to consider the operation of pumped-water power generation by reflecting the value of pumped-up power generation that is not evaluated in the market. Since Korea's electricity market is isolated in a state where it is impossible to connect with other countries, it may be vulnerable to a stable electricity operation system. Therefore, there is a need for a facility that can stably secure reserve power and produce power quickly when necessary. If pumped-water power generation is actively used for power operation, a more stable power system can be secured.

군부대 유휴부지를 활용한 탄소 순 배출량 제로 달성을 위한 태양광 패널 및 수소 연료 저장시설의 설치 규모 예측 (A Study on Predicting Installation Scale of Photovoltaic Panels and Hydrogen Fuel Storage Facilities to Achieve Net Zero Carbon Emissions Exploiting Idle Sites of Military Bases)

  • 문동학;허지용
    • 한국군사과학기술학회지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2024
  • In this study, the scale of renewable photovoltaic(PV) panels and hydrogen fuel storage facilities required to achieve "net zero carbon emissions" in military facilities were predicted based on actual electricity consumption. It was set up to expect the appropriate installation size of PV panel and hydrogen fuel storage facility for achieving carbon neutrality, limited to the electricity consumption in the public sector, including national defense and social security administration in Yeongcheon. The experimental results of this paper are largely composed of two parts. First, representative meteorological factors were considered to predict solar power generation in the Yeongcheon area, and solar power generation was estimated through a multiple regression model using deep learning techniques. Second, the size of solar power generation facilities and hydrogen storage facilities in military bases was estimated with the amount of solar power generation and electricity consumption. As a result of this analysis, it was calculated that a site of 155.76×104 m2 for PV panels was needed and a facility capable of storing 27,657 kg of hydrogen gas was required. Through these results, it is meaningful to demonstrated the prospect that military units can lead the achievement of "carbon net zero 2050" by using PV panels and hydrogen fuel storage facilities on idle sites of military bases.

역전 유동층 내의 유동해석 및 슬러리아이스 생성에 관한 연구 (Flow pattern analysis and a study on formation of slurry ice in the reversing flow)

  • 오철;최영규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 전기공동학술대회 논문집
    • /
    • pp.202-202
    • /
    • 2011
  • Thermal energy storage(TES) cooling system using cheaper electricity of off-peak time has been applied to relief a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type thermal energy storage cooling system is one kind of more efficient ice-thermal energy storage cooling system than Ice-on-Coil type or Encapsulated type TES cooling system, even though, which are more popular TES system. This study is experimented to observe flow pattern and formation of slurry ice in reversing flow to improve efficiency of heat transfer between fluid and freezing tube.

  • PDF

신경회로망을 이용한 냉방부하예측에 관한 연구 (The Study on Cooling Load Forecast using Neural Networks)

  • 신관우;이윤섭
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.626-633
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity, The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data is approached to the actual data.

The Study on Cooling Load Forecast of an Unit Building using Neural Networks

  • Shin, Kwan-Woo;Lee, Youn-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.170-177
    • /
    • 2003
  • The electric power load during the summer peak time is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. The method of forecasting the cooling load using neural network is also suggested. The daily cooling load is mainly dependent on actual temperature and humidity of the day. The simulation is started with forecasting the temperature and humidity of the following day from the past data. The cooling load is then simulated by using the forecasted temperature and humidity data obtained from the simulation. It was observed that the forecasted data were closely approached to the actual data.

1MWh급 레독스흐름전지의 부하이전용 최적운전에 따른 전기요금 절감효과 분석 (Analysis of Electricity Cost Saving Effect by the Optimal load shifting Operation with 1MWh Redox Flow Battery)

  • 백자현;고은영;강태혁;이한상;조수환
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1151-1160
    • /
    • 2016
  • In recent years, the energy storage systems such as LiB, NaS, RFB(Redox-Flow Battery), Super- capacitor, pumped hydro storage, flywheel, CAES(Compressed Air Energy Storage) and so on have received great attention as practical solutions for the power supply problems. They can be used for various purpose of peak shaving, load leveling and frequency regulation, according to the characteristics of each ESS(energy storage system). This paper will focus at 1 MWh RFB system, which is being developed through the original technology project of energy material. The output of ESS is mainly characterized by C-rate, which means that the total rated capacity of battery will be delivered in 1 hour. And it is a very important factor in the ESS operation scheduling. There can be several options according to the operation intervals 15, 30 and 60minutes. The operation scheduling is based on the optimization to minimize the daily electricity cost. This paper analyzes the cost-saving effects by the each operating time-interval in case that the RFB ESS is optimally scheduled for peak shaving and load leveling.