• 제목/요약/키워드: Electricity Storage

검색결과 273건 처리시간 0.028초

A Study on HVDC and BESS Application for High Penetration of Renewable Energy Sources (제주지역 재생에너지 수용을 위한 HVDC 및 BESS 활용에 관한 연구)

  • Kwak, Eun-Sup;Min, Jae-Hyun;Jung, Ho-Chul;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제16권6호
    • /
    • pp.1339-1348
    • /
    • 2021
  • There are variety of reasons for renewable energy curtailment, including lack of transmission availability and grid system stability. In the Jeju island region, there are many cases in which the supply of electricity is already increased compared to the demand for electricity due to the increase of solar and wind power generation facilities, and accordingly, the number of curtailments for wind power generation is increasing. This research aims to find the direction of efficient reception of renewable energy and stable operation of the power system using HVDC(High Voltage Direct Current) and BESS(Battery Energy Storage System) facilities that are in charge of power supply in Jeju island. And the paper suggests a practical operation plan for optimal system operation, and the direction of system operation of the land power system due to the expansion of solar and wind power generation facilities in the future.

Design and Optimization of a Biomass Production System Combined with Wind Power Generation and LED on Marine Environment (LED가 결합된 야간풍력발전 활용을 포함한 해상환경 바이오매스 생산시스템의 최적 설계)

  • Hong, Gi Hoon;Cho, Sunghyun;Kang, Hoon;Park, Jeongpil;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • 제19권2호
    • /
    • pp.74-82
    • /
    • 2015
  • Carbon dioxide was designated as one of greenhouse gases that cause global warming. Among various ways to solve the $CO_2$ emission issue, the 3rd-generation biomass (algae) production is considered as a viable method to reduce $CO_2$ in the atmosphere. In this research, we propose a design of an innovative sustainable production system by utilizing the 3rd generation biomass in the environment of floating production storage and offloading (FPSO). Existing biomass production systems depend on the solar energy and they cannot continue producing biomass at night. Electricity produced from offshore wind farms also need an efficient way to store the energy through energy storage system (ESS) or deliver it real-time through power grid, both requiring heavy investment of capital. Thus, we design an offshore grid structure harnessing LED lights to supply the necessary light energy, by using the electricity produced from the wind farm, resulting in the maximized production of biomass and efficient use of wind farm energy. The final design integrates the biomass production system enhanced by LED lights with a wind power generation. The suggested NLP model for the optimal design, implemented in GAMS, would be useful for designing improved offshore biomass production systems combined with the wind farm.

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제19권3호
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

A Study on Optimal Design of Hybrid System of New and Renewable Energy-Linked Microgrid (신재생에너지 연계형 마이크로그리드의 하이브리드시스템 최적 설계 연구)

  • Lee, Jae-Kyung;Han, Yong-Chan;Kwon, Sung-Gi;Park, Gye-Choon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제35권6호
    • /
    • pp.631-638
    • /
    • 2022
  • Microgrid, which enables the production and consumption of electricity to be done independently on a small scale, has been studied on one of the solutions of reinforcement for flexibility of electronic system. This study examined the application effect of new microgrid by applying hybrid battery in electric power storage device. We designed the system to highlight the advantage of each battery and complement the disadvantage by using hybrid system with Lithium-ion battery and interval Redox flow battery. It runs with lithium-ion battery during the initial startup while the Redox flow battery operates for a long time at the end of excessive period, and it enables a discharge of Lithium-ion and Redox flow battery at the same time when the load has a large output. We chose Maldives as a subject of this study for organizing and optimizing independent microgrid. Maldives is the country to accomplish 100% domestic electricity in South Asia, but the whole electric power is supplied through diesel generation imported fossil fuel. We organized and optimized microgrid for energy independence on Malahini island to solve Maldives energy cost problem and global energy environment matters. We analyzed the daily power supply and accumulated the power supply from September 18, 2018~February 11, 2019. The accumulated power supply was about 120.4 MWh and the daily power supply was about 800~1000 kWh. Based on the collected information, we divided the cases into three models which are only diesel generator, solar generator as well as diesel generator, and solar+ESS+diesel generator. We analyzed the amount of oil consumption compared to the cost of construction and power output. The result showed that solar+ESS+diesel generator was most economically feasible. As well, we obtained that our considering hybrid battery system reduced the fuel consumption for diesel power generation about 10~15%.

A Study on the Thermal Prediction Model cf the Heat Storage Tank for the Optimal Use of Renewable Energy (신재생 에너지 최적 활용을 위한 축열조 온도 예측 모델 연구)

  • HanByeol Oh;KyeongMin Jang;JeeYoung Oh;MyeongBae Lee;JangWoo Park;YongYun Cho;ChangSun Shin
    • Smart Media Journal
    • /
    • 제12권10호
    • /
    • pp.63-70
    • /
    • 2023
  • Recently, energy consumption for heating costs, which is 35% of smart farm energy costs, has increased, requiring energy consumption efficiency, and the importance of new and renewable energy is increasing due to concerns about the realization of electricity bills. Renewable energy belongs to hydropower, wind, and solar power, of which solar energy is a power generation technology that converts it into electrical energy, and this technology has less impact on the environment and is simple to maintain. In this study, based on the greenhouse heat storage tank and heat pump data, the factors that affect the heat storage tank are selected and a heat storage tank supply temperature prediction model is developed. It is predicted using Long Short-Term Memory (LSTM), which is effective for time series data analysis and prediction, and XGBoost model, which is superior to other ensemble learning techniques. By predicting the temperature of the heat pump heat storage tank, energy consumption may be optimized and system operation may be optimized. In addition, we intend to link it to the smart farm energy integrated operation system, such as reducing heating and cooling costs and improving the energy independence of farmers due to the use of solar power. By managing the supply of waste heat energy through the platform and deriving the maximum heating load and energy values required for crop growth by season and time, an optimal energy management plan is derived based on this.

A Study on Design of Optimal Location for Renewable Energy Facility Using GIS (GIS를 사용한 재생에너지설비 최적 위치 설계에 관한 연구)

  • Jung, Moon-Seon;Moon, Chae-Joo;Chang, Young-Hak;Kim, Young-Gon;Lee, Sook-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제13권2호
    • /
    • pp.357-368
    • /
    • 2018
  • For well over 100 years, oil has enabled remote communities to generate electricity and enjoy the benefits of a consistent electrical supply. Relying solely on oil for electricity generation has left island and remote communities exposed to several risks and drawbacks. Oil-based electricity generation is often more expensive and subject to price volatility, which can result in the use of risky fuel hedging strategies. The residents of islands and remote communities express concern over the future impacts of climate change or insist on their opinions for the corresponding action with reduction of carbon emissions. These risks and drawbacks can be overcomed with continuing cost reductions in solar, wind, and energy storage technologies by maker. Reducing costs is not always a straightforward process, relying on more diversely and renewably arranged renewable energy sources led to reduced local construction cost in every situation reviewed in this study. In this paper, a convenient and simple design solution which will facilitate the optimum location and transmission route of renewable energy facility using GIS(Geographic Information System) is proposed. The suggested solutions exercised to the case of geomoon island using GIS and identified by local site survey.

Investigations into a Multipurpose Dam in Tasman District-New Zealand

  • Thomas, Joseph Theodore
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.40-48
    • /
    • 2008
  • The Waimea Basin is located on the northern tip of the South Island of New Zealand. It is a highly productive area with intense water use with multi-stakeholder interest in water. Irrigation from the underground aquifers here makes up the largest portion of used water; however the same aquifers are also the key urban and industrial sources of water. The Waimea/Wairoa Rivers are the main sources of recharge to the underlying aquifers and also feed the costal springs that highly valued by the community and iwi. Due to the location of the main rivers and springs close to the urban centre the water resource system here has high community and aesthetic values. Recent enhanced hydrological modelling work has shown the water resources in this area to be over allocated by 22% for a 1:10 year drought security for maintaining a minimalistic flow of 250 l/s in the lower Waimea River. The current irrigated land area is about 3700 hectares with an additional potential for irrigation of 1500 hectares. Further pressures are also coming on-line with significant population growth in the region. Recent droughts have resulted in significant water use cutbacks and the threat of seawater intrusion in the coastal margins. The Waimea Water Augmentation Committee (WWAC) initiated a three year stage 1 feasibility study in 2004/2005 into the viability of water storage in the upper parts of the catchment for enhancing water availability and its security of supply for consumptive, environmental, community and aesthetic benefits downstream. The project also sought to future proof water supply needs for the Waimea Plains and the surrounding areas for a 50 - 100 year planning horizon. The broad range stage 1 investigation programme has identified the Upper Lee Catchment as being suitable for a storage structure to provide the needs identified and also a possibility for some small scale hydro electricity generation as well. The stage 2 detailed feasibility investigations that are underway now (2007/2008), and to be completed in two years is to provide all details for progressing with the next stage of obtaining necessary permits for construction and commissioning a suitable dam.

  • PDF

A Development of VPP Platform for the Efficient Utilization of Distributed Renewable Energy Resources (분산 재생에너지의 효율적 활용을 위한 가상발전소(VPP) 플랫폼 개발에 관한 연구)

  • Cho, Young-Hyeok;Baek, Seung-Yup;Choi, Won-Yong;Jeong, Dae-Yul
    • The Journal of Information Systems
    • /
    • 제27권2호
    • /
    • pp.95-114
    • /
    • 2018
  • Purpose The recent concern over environmental problems such as greenhouse gas emission and fine dust contributes increasing interest in renewable energies. However the intrinsic characteristics of renewable energies, intermittent and stochastic generation, might cause serious problems to the stability and controllability of power grid. Therefore countermeasures such as virtual power plant (VPP) must be prepared in advance of the spread of uncontrollable distributed renewable energy resources to be one of major energy sources. Design/methodology/approach This study deals with the design concept of the VPP platform. we proposed as a technology solution for achieving the stability of power grid by guaranteeing a single power profile combining multiple distributed power sources with ICT. The core characteristics of VPP should be able to participate in the grid operation by responding to operation instructions from the system operator, KPX, as well as the wholesale electricity market. Findings Therefore this study includes energy storage device(ESS) as a controllable component as well as renewable energy resources such as photovoltaic and wind power generation. Based on this configuration, we discussed core element technologies of VPP and protype design of VPP solution platform according to system requirements. In the proposed solution platform, UX design for the integrated control center and brokerage system were included as well as ancillary service function to respond to KPX's operation instruction with utilizing the capability of ESS. In addition, a simulator was suggested to verify the VPP operations.

Economic Feasibility Study for CO2 Ocean Sequestration (CO2 해양격리시스템의 기술.경제적 가능성평가)

  • Park, Se-Hun;Oh, Wee-Yeong;Kwon, Moon-Sang
    • Ocean and Polar Research
    • /
    • 제27권4호
    • /
    • pp.451-461
    • /
    • 2005
  • The $CO_2$ storage in geologic and oceanic reservoirs is considered to be one of the carbon management strategies for responding to global climate change. Ocean carbon sequestration is purposeful storage acceleration into the ocean of large amounts of carbon that would accumulate in the atmosphere and naturally enter the ocean over a longer timespan. Some technologies for $CO_2$ ocean sequestrations have been developed as a nation project. However, $CO_2$ ocean sequestrations are attractive because they have the advantage of vast capacity sequestration far away from industrial areas, and offer easier monitoring whereas less economic advantage has been indicated as one of the key barriers compared with $CO_2$ geosphere sequestration, which is produced as a byproduct. In this paper, a conceptual design for $CO_2$ ocean sequestration is introduced, and the preliminary examination is described. As a result, the $CO_2$ price, US$ 24/t shows far away from the economics. The causes come from the expensive $CO_2$ recovery cost and the low $CO_2$ price. The expensive $CO_2$ recovery cost is because too much electricity and water are consumed. In order to look for an economic balance point for $CO_2$ ocean sequestration, NPV=0, it is increases the $CO_2$ price. Finally 60.4$ per ton is found to be the balance price.

A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation (태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구)

  • Choi, Hoi-Kyun
    • Journal of Climate Change Research
    • /
    • 제8권3호
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.