• Title/Summary/Keyword: Electricity Load

Search Result 515, Processing Time 0.022 seconds

Study on Optimal Control Algorithm of Electricity Use in a Single Family House Model Reflecting PV Power Generation and Cooling Demand (단독주택 태양광 발전과 냉방수요를 반영한 전력 최적운용 전략 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.381-386
    • /
    • 2016
  • An optimization algorithm is developed based on a simulation case of a single family house model equipped with PV arrays. To increase the nationwide use of PV power generation facilities, a market-competitive electricity price needs to be introduced, which is determined based on the time of use. In this study, quadratic programming optimization was applied to minimize the electricity bill while maintaining the indoor temperature within allowable error bounds. For optimization, it is assumed that the weather and electricity demand are predicted. An EnergyPlus-based house model was approximated by using an equivalent RC circuit model for application as a linear constraint to the optimization. Based on the RC model, model predictive control was applied to the management of the cooling load and electricity for the first week of August. The result shows that more than 25% of electricity consumed for cooling can be saved by allowing excursions of temperature error within an affordable range. In addition, profit can be made by reselling electricity to the main grid energy supplier during peak hours.

The Analysis of Load Management Effect in Shor-Term Generation Expansion Planning (단기 전력우급계획에서의 부하관리 효과 분석연구)

  • 김준현;정도영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.994-1002
    • /
    • 1992
  • With regard to price elasticity and cross elasticity of electricity, optimal generation expansion planning method including load management effect is suggested. In addition, optimal peak time price can be determined simultaneously, and we adopt peak time tariff as load management strategy. Instead of using hourly marginal demand curves where we can get customer surplus, we used chronological load curve with constraints to preserve social welfare. This method is proved useful in short-term generation expansion planning.

  • PDF

Performance Simulation of Part Load Operation for 2MWe Circulating Fluidized Bed Boiler (2MWe 순환유동상 보일러의 부분 부하 운전 성능 모사)

  • Kim, Taehyun;Choi, Sangmin;Hyun, Ju-soo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.35-36
    • /
    • 2012
  • Part load operation usually covers large periods of the total operation time on the economic ground and electricity demand in small-scale boilers. Performance analysis of part load behavior is very important for the purpose of boiler operation optimization. A simple thermal calculation approach is applied to predict performance of a pilot-scale circulating fluidized bed (CFB) boiler at part load operation. Verification has been carried out by comparing between calculation results an operation data of the boiler.

  • PDF

Analysis of Gas Turbine Competitiveness and Adequacy of Electricity Market Signal in Korea (한국 전력시장에서의 가스터빈(GT) 발전기 경쟁력 및 시장 미진입 적정성 분석)

  • Kim, Eun Hwan;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1172-1180
    • /
    • 2017
  • This study analyzed competition in peak load plants between CCGT and GT instead of competition between base and peak load plants like in previous studies. In common overseas power markets, CCGT and GT claim certain market shares as peak load plants with the latter boasting a high utilization rate as reserve plants. In South Korea, however, there has been no introduction of GT in the market that opened in 2001 with no analysis cases of GT's economy as a peak load plant. The current power market of South Korea is run on the cost-based pool, which allows for no price spikes. Since the capacity payment criteria for compensations for missing money are set based on GT generators, the power market uses GT generators as marginal plants. The purposes of this study were to analyze the competitive edge of GT generators as peak load plants in the domestic power market of South Korea and identify the causes of GT's failure in market entry, thus assessing the adequacy of market signals in the domestic power market.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

A Study on BIPV system generation matching by electricity load characteristic of Building (건물의 전기부하특성에 따른 BIPV시스템의 부하매칭에 관한 연구)

  • Park, Jae-Wan;Shin, U-Cheul;Kim, Dae-Gon;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.67-74
    • /
    • 2013
  • These days, although thermal energy is decreasing, electric energy is increasing in building. Also, it is very important to research and distribute BIPV(Building Integrated photovoltaic) because our society consider electricity more significant than other energy in building. Therefore, in this paper, our research team analyzed difference between BIPV yield and building energy consumption through experimental research. As a result, yearly building energy consumption was 104,602.4kWh and BIPV yield was 105,267kWh. And then, totally counterbalanced time took up 26%, reduced electric load time took up 16%. In other words, peak load could be reduced up to 42% by BIPV. As a result, yearly building energy consumption was 104,602.4kWh and BIPV yield was 105,267kWh. And then, totally counterbalanced time took up 26%, reduced electric load time took up 16%. In other words, peak load could be reduced up to 42% by BIPV.

An Analysis of Optimal Operation Strategy of ESS to Minimize Electricity Charge Using Octave (Octave를 이용한 전기 요금 최소화를 위한 ESS 운전 전략 최적화 방법에 대한 분석)

  • Gong, Eun Kyoung;Sohn, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.85-92
    • /
    • 2018
  • Reductions of the electricity charge are achieved by demand management of the load. The demand management method of the load using ESS involves peak shifting, which shifts from a high demand time to low demand time. By shifting the load, the peak load can be lowered and the energy charge can be saved. Electricity charges consist of the energy charge and the basic charge per contracted capacity. The energy charge and peak load are minimized by Linear Programming (LP) and Quadratic Programming (QP), respectively. On the other hand, each optimization method has its advantages and disadvantages. First, the LP cannot separate the efficiency of the ESS. To solve these problems, the charge and discharge efficiency of the ESS was separated by Mixed Integer Linear Programming (MILP). Nevertheless, both methods have the disadvantages that they must assume the reduction ratio of peak load. Therefore, QP was used to solve this problem. The next step was to optimize the formula combination of QP and LP to minimize the electricity charge. On the other hand, these two methods have disadvantages in that the charge and discharge efficiency of the ESS cannot be separated. This paper proposes an optimization method according to the situation by analyzing quantitatively the advantages and disadvantages of each optimization method.

Scenario Analysis of Natural Gas Demand for Electricity Generation in Korea (전력수급기본계획의 불확실성과 CO2 배출 목표를 고려한 발전용 천연가스 장기전망과 대책)

  • Park, Jong-Bae;Roh, Jea Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1503-1510
    • /
    • 2014
  • This study organizes scenarios on the power supply plans and electricity load forecasts considering their uncertainties and estimates natural gas quantity for electricity generation, total electricity supply cost and air pollutant emission of each scenario. Also the analysis is performed to check the properness of government's natural gas demand forecast and the possibility of achieving the government's CO2 emission target with the current plan and other scenarios. In result, no scenario satisfies the government's CO2 emission target and the natural gas demand could be doubled to the government's forecast. As under-forecast of natural gas demand has caused the increased natural gas procurement cost, it is required to consider uncertainties of power plant construction plan and electricity demand forecast in forecasting the natural gas demand. In addition, it is found that CO2 emission target could be achieved by enlarging natural gas use and demand-side management without big increase of total costs.

Long-term Regional Electricity Demand Forecasting (지역별 장기 전력수요 예측)

  • Kwun, Young-Han;Rhee, Chang-Mo;Jo, In-Seung;Kim, Je-Gyun;Kim, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.87-91
    • /
    • 1990
  • Regional electricity demand forecasting is among the most important step for lone-term investment and power supply planning. This study presents a regional electricity forecasting model for Korean power system. The model consists of three submodels, regional economy, regional electricity energy demand, and regional peak load submodels. A case study is presented.

  • PDF

Clustering of PV Load Patterns Based on Any Colony Centroid Model

  • Munshi, Amr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.67-72
    • /
    • 2022
  • There has been a significant growth in global population and industrialization, as a consequence demand for electricity is increasing rapidly and the power systems need to increase the electricity generation. Currently, most of generated electricity is generated from fossil fuels. However, there are many financial and environmental concerns associated with the generation of electricity from such resource. Photovoltaic )PV) solar as a renewable resource is promising. The power output of PV systems is mainly affected by the solar irradiation and ambient temperature. This paper attempts at reducing the burden and improving the accuracy of the extensive simulations related to integrating PV systems into the electrical grid.