• Title/Summary/Keyword: Electricity Energy

검색결과 2,002건 처리시간 0.03초

수소경제 관점의 전기에너지주택 보급기반 구축에 관한 연구 (A Study on the Infrastructure of All-electric Houses in the Viewpoint of Hydrogen Economy)

  • 황성욱;이현주;김강식;나환선;김정훈
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.100-109
    • /
    • 2012
  • In this paper, some ideas are proposed to establish the infrastructure of all-electric houses which are able to reduce primary energy consumption and $CO_2$ emission by adopting heat pump systems and induction heating cookers excluding the use of fossil fuel energy. This electrification concept is based on the consumption of only one type of energy which means electricity as secondary energy and the conventional fossil fuel energy is just consumed to generate electricity as primary energy. All-electric house is laid on the extension of the hydrogen economy in a long-term viewpoint so that the effectiveness of this new conceptual house is estimated analyzing the reduction of $CO_2$ emission. In this analysis, the balance of electricity supply and demand is considered including the construction of new power plants by renewable energy such as nuclear, IGCC and fuel cell because decarbonization is an essential element of hydrogen technology and economy and this action is accomplished in both supply and demand side of electricity. The results are able to contribute to develop various useful hydrogen policies and strategies and some detail researches are required previously to make the best application of this new conceptual house.

지역난방 공동주택의 에너지원별 원단위 사례분석 (Case Study on the Energy Consumption Unit of District Apartments)

  • 이왕제;강은철;이의준;오병칠;신우철
    • 설비공학논문집
    • /
    • 제26권10호
    • /
    • pp.474-480
    • /
    • 2014
  • This study investigated the total energy consumption and the energy consumption by type of 31 apartment complexes in Daejeon. The energy is supplied to the apartments from district heating, and can be divided into hot water, electricity, and gas. Hot water is used in for space heating and for domestic hot water (DHW), and electricity is used for plugs, cooling, ventilation, and public utilities (street lights, pumps, elevators, etc.). All gas supplied from district heating is used for cooking. As a result, the consumption unit of each energy source of independent dwelling areas was calculated to be $103.7kWh/m^2{\cdot}a$ ($15,692kWh/H{\cdot}a$) for thermal energy, $48.0kWh/m^2{\cdot}a$ ($4,646kWh/H{\cdot}a$) for electricity, and $10.5kWh/m^2a$ ($1,015kWh/H{\cdot}a$) for gas, so the entire consumption was calculated to be $162.3kWh/m^2{\cdot}a$ ($15,692kWh/H{\cdot}a$).

차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구 (A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building)

  • 박세현;강준구;방아영;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제35권2호
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

전력수급 종합시스템의 현황분석 및 전력산업 구조개편에 따른 전망 (Highly Intergrated Total Energy System and its Application in a Competitive Electricity Market)

  • 김정훈;추진부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1501-1505
    • /
    • 1999
  • Highly Integrated Total Energy System for system operational planning and analysis is a totally integrated computerized system for various parts of power system operation planning and power system analysis. It is developed by KEPCO for about 8 years, named HITES. Nowadays restructuring, deregulation, privatization and competition of electricity market is introduced in the world. This paper describes HITES application for two typical models of a competitive electricity market.

  • PDF

아파트 단지를 대상으로 한 소형 열병합 발전 시스템 검토 (Study on the Small Scale CGS for APT. Complex)

  • 박화춘;박병식;정우용
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2000년도 추계 학술발표회 논문집
    • /
    • pp.221-227
    • /
    • 2000
  • 본 연구에서 대상아파트에 적용할 열병합발전 시스템의 적정 용량은 투자회수기간 및 이익발생량 등을 고려할 때 약 300kW(전기출력)급으로 나타났으며, 열병합발전 시스템의 운전 모드는 전기부하추종을 바탕으로 하여 아파트 단지의 전기수요의 기저부하를 담당하도록 하며, 아파트 단지의 전기부하가 발전기 정격용량(300kW) 이상의 범위에서는 한전전기와 계통 연계되어 운전토록 하고, 전기부하가 발전기 정격용량의 50% 부하 이상의 범위에서는 발전기만 운전하고, 전기부하가 발전기 정격용량의 50% 부하 이하에서는 발전기를 정지하고 한전전기만으로 운전하는 것이 바람직한 것으로 나타났다.

  • PDF

구역전기사업의 환경분석을 평가를 통한 분산형전원개발 촉진방안에 관한 연구 (A Study on Measures to Boost the Development of Distributed Generation through Analysis and assessment of the District Electricity Power Business Environment)

  • 김수철;유왕진
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1304-1312
    • /
    • 2009
  • The purpose of this study is to build promotive measures and to develop alternative policies of DG(Distributed Generation) by finding and analysing effects of four business environment factors related to DEPB(District Electricity Power Business) on boosting DG. In this study, four business environment factors, which are the electric power industry restructuring, electricity tariff and pricing structure, regulations for DEPB, and conflicts of stake-holding groups, are considered as independent variables. And promotion factors of DG including small CHP(Combined Heat and Power) generation, which is outcome of DEPB, are considered as dependent variables. But dependent variables including booming of new renewable energy generation due to green energy pricing incentives, the electric power industry restructuring, and electricity tariff and pricing policies were separatively considered. In this study, some policies were proposed reflecting research results of empirical demonstrative analysis, previous studies, overseas cases, etc.

Agent-Based Modeling for Studying the Impact of Capacity Mechanisms on Generation Expansion in Liberalized Electricity Market

  • Dahlan, N.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1460-1470
    • /
    • 2015
  • This paper presents an approach to solve the long-term generation expansion planning problem of the restructured electricity industry using an agent-based environment. The proposed model simulates the generation investment decisions taken by a particular agent (i.e. a generating company) in a market environment taking into account its competitors’ strategic investment. The investment decision of a particular company is modeled taking into account that such company has imperfect foresight on the future system development hence electricity prices. The delay in the construction of new plants is also explicitly modeled, in order to compute accurately the yearly revenues of each agent. On top of a conventional energy market, several capacity incentive mechanisms including capacity payment and capacity market are simulated, so as to assess their impact on the investment promotion for generation expansion. Results provide insight on the investment cycles as well as dynamic system behavior of long-term generation expansion planning in a competitive electricity industry.

도심(都心) 임대(賃貸)아파트의 에너지 및 상수(上水) 소비(消費) 특성(特性) 분석(分析) (An Analysis on the Characteristics of Energy and Water Consumption in Urban Rental Apartment)

  • 서윤규;김주영;홍원화
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2008년 추계학술발표대회 논문집
    • /
    • pp.261-265
    • /
    • 2008
  • To solve the lack of housing, our country has supplied an enormous volume of apartments, and these days it occupies 75% of our buildings. As apartments occupy most of our housings, the rate of energy usage from them are also high. On this, setting apartment energy reduction as a target, by researching the actual conditions of energy consumption and drawing a basis data, we can apply this as a way of saving energy, rationalization of the scale of energy supply facilities and a standard when planning facilities. To grasp the present condition of energy usage of the urban rental apartment, this research analysed the use of electricity, gas and water monthly and annually of a rental apartment that is located in Daegu. The results showed that in 2003 the electricity usage was 1,198MWh but 1,315MWh in 2007, which means 9% of electricity usage increases every year. The average of water usage was $85,072m^2$ per year and they used $604.2MJ/m^2$ Typical energy consumption unit on $74.4m^2$ of area and $448.8MJ/m^2$ on $105.8m^2$. By showing the usage of energy and water of the urban rental apartment, understanding the tendency and preparing an Typical energy consumption unit standard through this research, apartments should use energy more efficiently.

  • PDF

어린이집의 넷 에너지 제로화 구현에 관한 사례분석 (A Feasibility Case Study on Net-Zero Energy Daycare Center)

  • 김지현;임희원;신우철
    • 대한건축학회논문집:구조계
    • /
    • 제35권4호
    • /
    • pp.185-192
    • /
    • 2019
  • In this study, we, through case studies, formulated a method to implement net-zero energy daycare center at the current insulation and technology level, and calculated its energy expense. The reference model was a medium sized daycare center whose number of children was 99. We analyzed the energy consumption status for the reference model and developed TRNSYS simulation analytical model to realize net-zero energy . We assumed the reference model to be "All Electric Building" where all energy including cooking is supplied by electricity. The result is summarized as follows: First, the annual electricity consumption of daycare center was 53,291kWh. Plug load occupied the largest share of 48% followed by lighting, 10%, cooling, 9%, cooking, 9%, heating, 8%, hot water, 5% and ventilation, 2%. Second, the photovoltaic installation capacity to realize net-zero energy was 40.32kWp and its annual generation was 53,402kWh. Third, the annual energy expense(electricity bill) by realizing net-zero energy was 2,620,390won.

ELM을 이용한 특수일 최대 전력수요 예측 모델 개발 (Development of Peak Power Demand Forecasting Model for Special-Day using ELM)

  • 지평식;임재윤
    • 전기학회논문지P
    • /
    • 제64권2호
    • /
    • pp.74-78
    • /
    • 2015
  • With the improvement of living standards and economic development, electricity consumption continues to grow. The electricity is a special energy which is hard to store, so its supply must be consistent with the demand. The objective of electricity demand forecasting is to make best use of electricity energy and provide balance between supply and demand. Hence, it is very important work to forecast electricity demand with higher precision. So, various forecasting methods have been developed. They can be divided into five broad categories such as time series models, regression based model, artificial intelligence techniques and fuzzy logic method without considering special-day effects. Electricity demand patterns on holidays can be often idiosyncratic and cause significant forecasting errors. Such effects are known as special-day effects and are recognized as an important issue in determining electricity demand data. In this research, we developed the power demand forecasting method using ELM(Extreme Learning Machine) for special day, particularly, lunar new year and Chuseok holiday.