• 제목/요약/키워드: Electricity Energy

검색결과 2,002건 처리시간 0.025초

Stochastic Gradient Descent Optimization Model for Demand Response in a Connected Microgrid

  • Sivanantham, Geetha;Gopalakrishnan, Srivatsun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.97-115
    • /
    • 2022
  • Smart power grid is a user friendly system that transforms the traditional electric grid to the one that operates in a co-operative and reliable manner. Demand Response (DR) is one of the important components of the smart grid. The DR programs enable the end user participation by which they can communicate with the electricity service provider and shape their daily energy consumption patterns and reduce their consumption costs. The increasing demands of electricity owing to growing population stresses the need for optimal usage of electricity and also to look out alternative and cheap renewable sources of electricity. The solar and wind energy are the promising sources of alternative energy at present because of renewable nature and low cost implementation. The proposed work models a smart home with renewable energy units. The random nature of the renewable sources like wind and solar energy brings an uncertainty to the model developed. A stochastic dual descent optimization method is used to bring optimality to the developed model. The proposed work is validated using the simulation results. From the results it is concluded that proposed work brings a balanced usage of the grid power and the renewable energy units. The work also optimizes the daily consumption pattern thereby reducing the consumption cost for the end users of electricity.

하수처리시설의 에너지 자립화 방안 연구 (Study on Energy Independence Plan for Sewage Treatment Plant)

  • 김영준;정철권;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.15-20
    • /
    • 2008
  • The objectives of this study are to analyze the energy independence plan and to propose a suitable sewage treatment plant in Korea. The total amount of electricity consumption for public sewage treatment plant was estimated as 1,182 GWh in 2007. It was estimated that total 16 sewage treatment plants with renewable energy systems produced electricity of 15.2 GWh per year, which could replaced 0.8% of total electricity used for sewage treatment. It was found that domestic sewage treatment plants with power generation plants by digestion gas were installed in 7 places and produced electricity of 13 GWh per year. It was also found that the power generation plants by digestion gas were the most cost-effective for sewage treatment out of the renewable energy systems based on the benefit-cost analysis.

  • PDF

계시별 전기요금에서의 프로슈머와 소비자간 전력거래 가격추정 (Estimation of Electric Power Trading Price between Prosumer and Consumer Under Time-of-Use (TOU))

  • 이영준;박수진;윤용범
    • 신재생에너지
    • /
    • 제17권2호
    • /
    • pp.1-8
    • /
    • 2021
  • We estimated the price range of electricity transactions under the prosumer system, considering the spread of renewable energy and the prospect of introducing a surplus power trading system between power consumers in Korea. The range (min/max) of power transaction prices was estimated by prosumers and consumers who could purchase electricity from utilities if needed. It is assumed that utilities purchased electricity from prosumers and consumers under a Time-of-Use (TOU) rate, trading at a monthly price. The range of available transaction prices according to the amount of power purchased from utilities and the amount of transaction power was also estimated. The price range that can be traded is expected to vary depending on variables such as the TOU rate, purchased and surplus power, levelized cost of electricity, etc.

물의 전기분해에 의한 수소 제조기술과 경제성 분석 (Economic analysis of hydrogen production technology using water electrolysis)

  • 심규성;김창희;박기배
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.324-332
    • /
    • 2004
  • According to the rapid depletion of the fossil fuels, the electricity and hydrogen will gradually take charge of the future energy supply. Especially, in order to control the supply and demand of electricity, energy storage medium is necessary and this could be solved by the combination of water electrolysis and fuel cell. Although electricity can be generated from such alternative energies as hydropower, nuclear, solar, and wind-power resources, alternative energy storage medium is also required since regenerative energies, solar and wind-powers, are intermittent energy resources. In this regard, hydrogen production from water electrolysis was recognized as a superb method for electricity storage. In this work, the current development and economic status of alkaline, solid polymer, and high temperature electrolysis were reviewed, and then the practical use of water electrolysis technology were discussed.

복합열병합 시스템에 대한 열과 전기의 원가산정 (Cost Accounting of Heat and Electricity of a Combined Cycle Cogeneration System)

  • 김덕진;이근휘
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.560-568
    • /
    • 2005
  • The cost accounting of electricity and heat produced from an energy system is important in evaluating the economical efficiency and deciding the reasonable sale price. The OECOPC method, suggested by the author, was applied to a 650 MW combined cycle cogeneration system having 4 operating modes, and each unit cost of electricity and heat products was calculated. In case that a fuel cost is ${\\}400/kg$ and there are no direct and indirect cost, they were calculated as follows; electricity cost of ${\\}23,700/GJ$ at gas-turbine mode, electricity cost of ${\\}15,890/GJ$ at combined cycle mode, electricity cost of ${\\}14,146/GJ$ and heat cost of ${\\}6,466/GJ$ at cogeneration mode, and electricity cost of ${\\}14,387/GJ$ and heat cost of ${\\}4,421/GJ$ at combined cycle cogeneration mode. Further, these unit costs are applied to account benefit on this system. Since the suggested OECOPC method can be applied to any energy system, it is expected to contribute to cost accounting of various energy systems.

Load Control between PV Power Plants and Diesel Generators

  • Mohamed Khalil Abdalla MohamedAli;AISHA HASSAN ABDALLA HASHIM;OTHMAN KHALIFA
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.33-40
    • /
    • 2024
  • Introducing renewable energy sources, such as wind and photovoltaic arrays, in microgrids that supply remote regions with electricity represents a significant leap in electricity generation. Combining photovoltaic panels and diesel engines is one of the most common ways to supply electricity to rural communities. Such hybrid systems can reduce the cost of electricity generation in these remote power systems because they use free energy to balance the power generated by diesel engines. However, the combination of renewable energy sources and diesel engines tends to complicate the sizing and control of the entire system due to the intermittent nature of renewable energy sources. This study sought to investigate this issue in depth. It proposes a robust hybrid controller that can be used to facilitate optimum power sharing between a PV power source and diesel generators based on the dynamics of the available PV energy at any given time. The study also describes a hybrid PV-diesel power plant's essential functional parts that produce electricity for a microgrid using a renewable energy source. Power control needs to be adjusted to reduce the cost of power generation.

국가전력생산 시스템에 대한 전 과정 영향평가 (Life Cycle Assessment for National Electricity Generation Systems)

  • 김태운;김성호;정환삼;하재주;민경란;고순현
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 춘계 학술발표회 논문집
    • /
    • pp.353-358
    • /
    • 2004
  • In recent, the trends in national energy Policy are established in the context of the integrated risk estimation for various national electricity generating options. The approach takes account of health, environmental, economic, and social aspects of electricity generation systems. In the present work, nuclear, coal, and LNG sources are chosen because these hold more than 90% of national total electricity generation in a descending order. A life cycle assessment (LCA) methodology is used for comparing environmental impacts of these options during the life cycle such as construction, operation as well as disposal stages. Here, the LCA consists of life cycle inventory analysis, classification/selection process of impact categories, characterization process, and normalization process of each category. LCA can be an useful tool for environmental impact assessment of future national energy options. At the planning stage of future energy Policies, the results of LCA would be taken into consideration. According to data update at the construction and disposal stages, the LCA needs to be conducted iteratively.

  • PDF

Design of a renewable energy system with battery and power-to-methanol unit

  • Andika, Riezqa;Kim, Young;Yun, Choa Mun;Yoon, Seok Ho;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • 제36권1호
    • /
    • pp.12-20
    • /
    • 2019
  • An energy storage system consisting of a battery and a power-to-methanol (PtM) unit was investigated to develop an energy storage system for renewable energy systems. A nonlinear programming model was established to optimize the energy storage system. The optimal installation capacities of the battery and power-to-methanol units were determined to minimize the cost of the energy system. The cost from a renewable energy system was assessed for four configurations, with or without energy storage units, of the battery and the power-to-methanol unit. The proposed model was applied to the modified electricity supply and demand based on published data. The results show that value-adding units, such as PtM, need be included to build a stable renewable energy system. This work will significantly contribute to the advancement of electricity supply and demand management and to the establishment of a nationwide policy for renewable energy storage.

탈석유화와 전기화의 관계 분석 (Relationship between declining oil use and electrification)

  • 최효연;김선영;유승훈
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.119-124
    • /
    • 2014
  • 1970년대 오일쇼크 이후 많은 국가들이 석유에 대한 에너지 의존도를 줄이는 정책을 펼쳤다. 특히, 한국은 빠른 속도의 탈석유화가 일어났으며, 이러한 탈석유화는 급속한 전기화로 이어져 전력수요 급증의 한 요인이 되었다. 본 연구에서는 OECD 34개국을 대상으로 한 1985년부터 2011년까지의 패널자료를 이용하여 탈석유화와 전기화의 관계를 분석함으로써 최근 벌어지고 있는 전력수급난에 대한 정책적 시사점을 제공하고자 한다. 패널분석을 위해 확률효과모형 및 고정효과모형을 적용하였 다. 분석결과 총에너지 소비에서 에너지유 소비 비중(탈석유화 척도)이 10%p 증가하면 전력 소비량이 약 15% 감소하는 것으로 나타났다. 특히 산업용 전력소비가 전체 전력소비에서 차지하는 비중을 국제 비교해보면 우리나라의 경우 OECD 34개 중 4위(2011년 기준)로 나타나는 등 주로 산업부문에서 석유에서 전력으로의 급격한 수요 전환이 현재의 전력수급 위기의 주요 원인 중 하나라는 점을 알 수 있다.

한국의 경제성장, 전력소비, CO2 배출 및 외국인직접투자 유입 간 인과관계 분석 (An Analysis on Causalities Among GDP, Electricity Consumption, CO2 Emission and FDI Inflow in Korea)

  • 박창대;김성원;박중구
    • 에너지공학
    • /
    • 제28권2호
    • /
    • pp.1-17
    • /
    • 2019
  • 본 논문은 한국을 대상으로 1976년부터 2014년까지 경제성장, 전력소비, $CO_2$ 배출과 외국인직접투자(FDI) 유입 간 인과관계를 단위근 검정, 공적분 검정, 벡터오차수정모형(VECM)을 적용하여 분석한다. 분석의 결과는 다음과 같다. 첫째, 경제성장과 전력소비 간에는 장기적으로 양방향의 인과관계가 나타나, 상호관계를 고려하지 않은 전력소비절약정책은 경제성장에 부정적인 영향을 미칠 수 있는 것으로 분석되었다. 둘째, $CO_2$ 배출은 경제성장에 대한 단방향의 장 단기적인 인과관계와 전력소비에 대한 단방향의 장기적인 인과관계를 나타내, $CO_2$ 배출 감축정책이 경제성장과 전력소비에 부정적인 영향을 미칠 수 있는 것으로 분석되었다. 셋째, FDI 유입은 경제성장에 대해 단방향의 장기적인 인과관계를, 전력소비에 대해 단방향의 장 단기적인 인과관계를 나타내, FDI 유입이 상대적으로 저렴한 전력소비비용에 기반을 둔 것으로 분석되었다. 반면, FDI 유입은 $CO_2$ 배출에 대해서는 인과관계가 없는 것으로 나타났는데, 이는 서비스 산업 중심으로 이루어지는 FDI의 특성에 따른 것으로 분석되었다. 이러한 네 변수 간 인과관계들을 고려할 때, 능동적인 전력수요관리를 위한 기술개발의 확대와 화석연료에서 신재생에너지로의 신중한 전환을 위한 정책 등이 모색되어야 한다. 또한 FDI 유치의 증대에 대응하여 에너지절약시설 투자 및 설치를 통해 전력소비 감축을 유도할 필요가 있다.