• Title/Summary/Keyword: Electrical-electronics Engineering

Search Result 11,578, Processing Time 0.037 seconds

A New High Frequency Linked Soft-Switching PWM DC-DC Converter with High and Low Side DC Rail Active Edge Resonant Snubbers for High Performance Arc Welder

  • Kang, Ju-Sung;Fathy, Khairy;Saha, Bishwajit;Hong, Doo-Sung;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.399-402
    • /
    • 2006
  • This paper presents a new circuit topology of dc bus line switch-assisted half-bridge soft switching PWM inverter type dc-dc converter for arc welder. The proposed power converter is composed of typical voltage source half-bridge high frequency PWM inverter with a high frequency transformer link in addition to dc bus line side power semiconductor switching devices fer PWM control scheme and capacitive lossless snubbers. All the active power switches in the half-bridge arm and dc bus lines can achieve ZCS turn-on and ZVS turn-off commutation operation and consequently the total turn-off switching losses can be significantly reduced. As a result, a high switching frequency of using IGBTs can be actually selected more than about 20 kHz. The effectiveness of this new converter topology is proved for low voltage and large current dc-dc power supplies such as arc welder from a practical point of view.

  • PDF

Improved High Efficiency Bidirectional Resonant Converter for V2G EV Charger (OBC) (V2G EV 충전기(OBC)를 위한 개선된 고효율 양방향 공진컨버터)

  • Oh, Jae-Sung;Kim, Min-Ji;Lee, Jun-Hwan;Woo, Jung-Won;Kim, Eun-Soo;Won, Jong-Seob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.438-444
    • /
    • 2019
  • In this paper, bidirectional LLC resonant DC/DC converters with the primary auxiliary windings in transformers of resonant circuits are proposed. Although the resonant capacitors are used on both the primary and secondary sides, regardless of the direction of power flow, the main feature of the proposed converters exhibits high gain characteristics without any mutual coupling between the resonant capacitors. For one of the proposed converters, an investigation of the operating characteristics in each mode has been carried out. A prototype of a 3.3 kW bidirectional LLC resonant converter for interfacing 750 V DC buses has been built and tested to verify the validity and applicability of the proposed converter.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

Third Harmonic Injection Circuit to Eliminate Electrolytic Capacitors in Light-Emitting Diode Drivers

  • Yoo, Jin-Wan;Jung, Kwang-Hyun;Jeon, In-Ung;Park, Chong-Yeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.358-365
    • /
    • 2012
  • A new third harmonic injection circuit for light-emitting diode (LED) drivers is proposed to eliminate electrolytic capacitors and thereby extend the lifetime of LED drivers. When a third harmonic current is injected to the input current of the LED driver, the required capacitance of the driver can be reduced. The proposed circuit can control an injection ratio and has simple circuitry. The synchronous third harmonic is generated by a phase locked loop (PLL), a 1/3 counter, and op-amps and applied to a power factor correction circuit. Thus, the storage capacitor can install film capacitors instead of the electrolytic capacitor. The value of storage capacitance can be reduced to 78% compared to an input power factor of 100%. The proposed circuit is applied to the 80W prototype LED driver to experimentally verify the performances.

Electrical Characteristic Changes of ZnO Varistors by Energy Absorption

  • Kim, Woo-Hyun;Hwang, Seong-Cheol;Wang, Guoming;Kil, Gyung-Suk;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.817-821
    • /
    • 2017
  • As a ZnO varistor is subjected to electrical and environmental stresses, it degrades gradually, which may result in power interruption by short circuit. This study investigates changes in the electrical characteristics of ZnO varistors due to deterioration owing to energy absorption, and determines the optimal parameters for on-line diagnosis of the varistor. Two types of varistors were used for an accelerated aging experiment involving the application of the $8/20{\mu}s$ standard lightning impulse current. The electrical characteristics in terms of the reference voltage, total leakage current, resistive leakage current, and third-harmonic component of the total leakage current were measured, and their change rates were analyzed. The results revealed that the total leakage current increased slightly with an increase in the varistor absorbed energy, while the resistive leakage current and the third-harmonic component increased apparently. Therefore, the third-harmonic component of the total leakage current was proposed as the optimal parameter for on-line monitoring of ZnO varistor conditions.

Etching Properties of ZnS:Mn Thin Films in an Inductively Coupled Plasma

  • Kim, Gwan-Ha;Woo, Jong-Chang;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • ZnS is an attractive material for future optical and electrical devices since it has a direct and wide band gap to provide blue emission at room temperature. In this study, inductively coupled $BCl_3/Ar$ plasma was used to etch ZnS:Mn thin films. The maximum etch rate of 164.2 nm/min for ZnS:Mn was obtained at a $BCl_3(20)/Ar(80)$ gas mixing ratio, an rf power of 700 W, a dc bias voltage of -200V, a total gas flow of 20 sccm, and a chamber pressure of 1Pa. The etch behaviors of ZnS:Mn thin films under various plasma parameters showed that the ZnS:Mn were effectively removed by the chemically assisted physical etching mechanism. The surface reaction of the ZnS:Mn thin films was investigated by X-ray photoelectron spectroscopy. The XPS analysis revealed that Mn had detected on the surface ZnS:Mn etched in $BCl_3/Ar$ plasma.

Design and Application of a Ground Risk Voltage Measurement System (대지 위험전압 측정기의 설계 및 적용)

  • Jang, Un-Yong;Cha, Hyeon-Kyu;Cha, Sang-Wook;Park, Dae-Won;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.250-255
    • /
    • 2011
  • This paper dealt with the design, fabrication and application of a risk voltage measurement system (RVMS) which analyzes the step and touch voltages in electrical grounding systems. The RVMS supply 300 V and 1.4 A in ranges from 40 Hz to 1 kHz as the test power source. A DAQ module having resolution of 400 kS/s and 16 bit is equipped with 7 inputs for measuring voltage and current. Also, a noise elimination algorithm of digital filter was applied to reduce the measurement error caused by external noises as a commercial frequency current. The performance of the RVMS was evaluated by measurement of the step and touch voltage according to the IEEE standard 80 and 81 in a grounding system with a 10 m counterpoise. The result showed that the RVMS analyzes the risk voltage with the error below 5%.

Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor

  • Nagarajan, V.S.;Kamaraj, V.;Balaji, M.;Arumugam, R.;Ganesh, N.;Rahul, R.;Lohit, M.
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.544-553
    • /
    • 2016
  • Torque ripple minimization without decrease in average torque is a vital attribute in the design of Synchronous Reluctance (SynRel) motor. As the design of SynRel motor is an arduous task, which encompasses many design variables, this work first analyses the significance of the effect of varying the geometrical parameters on average torque and torque ripple and then proposes an extensive optimization procedure to obtain configurations with improved average torque and minimized torque ripple. A hardware prototype is fabricated and tested. The Finite Element Analysis (FEA) software tool used for validating the test results is MagNet 7.6.0.8. Multi Objective Particle Swarm Optimization (MOPSO) is used to determine the various designs meeting the requirements of reduced torque ripple and improved torque performance. The results indicate the efficacy of the proposed methodology and substantiate the utilization of MOPSO as a significant tool for solving design problems related to SynRel motor.

Analysis of Tunnelling Rate Effect on Single Electron Transistor

  • Sheela, L.;Balamurugan, N.B.;Sudha, S.;Jasmine, J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1670-1676
    • /
    • 2014
  • This paper presents the modeling of Single Electron Transistor (SET) based on Physical model of a device and its equivalent circuit. The physical model is derived from Schrodinger equation. The wave function of the electrode is calculated using Hartree-Fock method and the quantum dot calculation is obtained from WKB approximation. The resulting wave functions are used to compute tunneling rates. From the tunneling rate the current is calculated. The equivalent circuit model discuss about the effect of capacitance on tunneling probability and free energy change. The parameters of equivalent circuit are extracted and optimized using genetic algorithm. The effect of tunneling probability, temperature variation effect on tunneling rate, coulomb blockade effect and current voltage characteristics are discussed.

A Kalman Filter based Predictive Direct Power Control Scheme to Mitigate Source Voltage Distortions in PWM Rectifiers

  • Moon, Un-chul;Kim, Soo-eon;Chan, Roh;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.190-199
    • /
    • 2017
  • In this paper, a predictive direct power control (DPC) method based on a Kalman filter is presented for three-phase pulse-width modulation (PWM) rectifiers to improve the performance of rectifiers with source voltages that are distorted with harmonic components. This method can eliminate the most significant harmonic components of the source voltage using a Kalman filter algorithm. In the process of predicting the future real and reactive power to select an optimal voltage vector in the predictive DPC, the proposed method utilizes source voltages filtered by a Kalman filter, which can mitigate the adverse effects of distorted source voltages on control performance. As a result, the quality of the source currents synthesized using the PWM rectifier is improved, and the total harmonic distortion (THD) values are reduced, even under distorted source voltages.