• Title/Summary/Keyword: Electrical-electronics Engineering

Search Result 11,578, Processing Time 0.041 seconds

An Approach for Identifying the Temperature of Inductance Motors by Estimating the Rotor Slot Harmonic Based on Model Predictive Control

  • Wang, Liguo;Jiang, Qingyue;Zhang, Chaoyu;Jin, Dongxin;Deng, Hui
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.695-703
    • /
    • 2017
  • In order to satisfy the urgent requirements for the overheating protection of induction motors, an approach that can be used to identify motor temperature has been proposed based on the rotor slots harmonic (RSH) in this paper. One method to accomplish this is to improve the calculation efficiency of the RSH by predicting the stator winding distribution harmonic order by analyzing the harmonics spectrum. Another approach is to increase the identification accuracy of the RSH by suppressing the influence of voltage flashes or current surges during temperature estimation based on model predictive control (MPC). First, an analytical expression of the stator inductance is extracted from a steady-state positive sequence motor equivalent circuit model developed from the rotor flux field orientation. Then a procedure that applies MPC for reducing the identification error of the rotor temperature caused by voltage sag or swell of the power system is given. Due to this work, the efficiency and accuracy of the RSH have been significantly improved and validated our experiments. This work can serves as a reference for the on-line temperature monitoring and overheating protection of an induction motor.

3-Phase Single Stage AC-DC Converter for Small Wind Turbine System (소형풍력발전을 위한 3상 단일전력단 교류-직류 컨버터)

  • Yu-Jin Moon;Beom-Su Park;Sang-Kyu Kim;Eun-Soo Kim;Deok-Jin Lim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.68-75
    • /
    • 2023
  • This paper proposes a three-phase single-stage AC-DC converter for the small wind generation system. Input power factor improvement and insulated output can be implemented with the proposed three-phase single-stage AC-DC converter under the wide power generation voltage (80-260 Vac) and frequency (10-42 Hz) in a small wind power generation (WPG) system. The proposed converter is also capable of zero-voltage switching in the primary-side switches and zero-current switching in the secondary-side diodes by phase-shift control at a fixed switching frequency. In addition, it is possible to control a wide output voltage (Vo: 39 VDC-60 VDC) by varying the link voltage and improving the input power factor (PF) and the total harmonic distortion factor (THDi). Simulation and experimental results verified the validity of the proposed converter.

Electrochemical Properties of (Li0.5-xNaxLa0.5)Ti0.8Zr0.2O3 Ceramics as Improved Electrolyte Materials for Li-ion Batteries

  • Lee, Seung-Hwan;Kim, Hong-Ki;Yun, Ye-Sol;Jeong, Tae-Hoon;Nam, Sung-Pill;Kim, Young-Sung;Kim, Jae-Chul;Lee, Ku-Tak;Im, In-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.96-99
    • /
    • 2014
  • We fabricated $(Li_{0.5-x}Na_xLa_{0.5})Ti_{0.8}Zr_{0.2}O_3$(LNTLZ)ceramics ($0{\leq}x{\leq}0.4$) with a perovskite structure via standard solid state synthesis. The influence of Na content on the structural and electrical properties of LNTLZ ceramics was also investigated. During XRD patterns analysis, all of the samples showed orthorhombic structure. The resistance of LNTLZ ceramics decreased as Na content increased, and the maximum activation energy shows 0.56 eV at x=0.4 at room temperature. These results indicated that LNTLZ ceramics are a candidate for use Lithium ion batteries as electrolytes.

The Energy Saving for Separately Excited DC Motor Drive via Model Based Method

  • Udomsuk, Sasiya;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.470-479
    • /
    • 2016
  • The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.

Finite Wordlength Recursive Sliding-DFT for Phase Measurement

  • Kim, Byoung-Il;Cho, Min-Kyu;Chang, Tae-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.1014-1022
    • /
    • 2012
  • This paper proposes a modified recursive sliding DFT to measure the phase of a single-tone. The modification is to provide a self error-cancelling mechanism so that it can significantly reduce the numerical error, which is generally introduced and accumulated when a recursive algorithm is implemented in finite wordlength arithmetic. The phase measurement error is analytically derived to suggest optimized distributions of quantization bits. The analytic derivation and the robustness of the algorithm are also verified by computer simulations. It shows that the maximum phase error of less than $5{\times}10^{-2}$ radian is obtained even when the algorithm is coarsely implemented with 4-bit wordlength twiddle factors.

Flashover Prediction of Polymeric Insulators Using PD Signal Time-Frequency Analysis and BPA Neural Network Technique

  • Narayanan, V. Jayaprakash;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1375-1384
    • /
    • 2014
  • Flashover of power transmission line insulators is a major threat to the reliable operation of power system. This paper deals with the flashover prediction of polymeric insulators used in power transmission line applications using the novel condition monitoring technique developed by PD signal time-frequency map and neural network technique. Laboratory experiments on polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. Partial discharge signals were acquired using advanced ultra wide band detection system. Salient features from the Time-Frequency map and PRPD pattern at different pollution levels were extracted. The flashover prediction of polymeric insulators was automated using artificial neural network (ANN) with back propagation algorithm (BPA). From the results, it can be speculated that PD signal feature extraction along with back propagation classification is a well suited technique to predict flashover of polymeric insulators.

A Finite Element Investigation of the Permittivity of Particulates (유전체 상수의 유한요소 시뮬레이션)

  • Braunstein, Jeffrey;Kwak, Yong-Soo;Kim, Hyeong-Seok;Park, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2297-2299
    • /
    • 2005
  • In this paper, a finite element (FEM) investigation of composite materials is studied. A pemittivity profile of the material is implemented to correspond to the Packing fraction of the physical composite. Curve fitting is applied to the standing wave pattern to determine the effective attenuation coefficient and propagation constant in the composite. The complex permittivity as a function of packing density is then determined. A comparison between the two dimensional and three dimensional measurement simulations is presented. An adaptive scheme is implemented to improve resolution of the finite element particulates.

  • PDF

Analytical Modeling and Simulation of Dual Material Gate Tunnel Field Effect Transistors

  • Samuel, T.S.Arun;Balamurugan, N.B.;Sibitha, S.;Saranya, R.;Vanisri, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1481-1486
    • /
    • 2013
  • In this paper, a new two dimensional (2D) analytical model of a Dual Material Gate tunnel field effect transistor (DMG TFET) is presented. The parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions. The simple and accurate analytical expressions for surface potential and electric field are derived. The electric field distribution can be used to calculate the tunneling generation rate and numerically extract tunneling current. The results show a significant improvement of on-current and reduction in short channel effects. Effectiveness of the proposed method has been confirmed by comparing the analytical results with the TCAD simulation results.

A Study on a Gain-Enhanced Antenna for Energy Harvesting using Adaptive Particle Swarm Optimization

  • Kang, Seong-In;Kim, Koon-Tae;Lee, Seung-Jae;Kim, Jeong-Phill;Choi, Kyung;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1780-1785
    • /
    • 2015
  • In this paper, the adaptive particle swarm optimization (APSO) algorithm is employed to design a gain-enhanced antenna with a reflector for energy harvesting. We placed the reflector below the main radiating element. Its back-radiated field is reflected and added to the forward radiated field, which could increase the antenna gain. We adopt the adaptive particle swarm optimization (APSO) algorithm, which improves the speed of convergence with a high frequency solver. The result shows that performance of the optimized design successfully satisfied the design goal of the frequency band, gain and axial ratio.