• Title/Summary/Keyword: Electrical resistance change

Search Result 502, Processing Time 0.027 seconds

The Property Change of ITO Prepared by Reactive R.F. Sputtering in POP manufacturing Process (반응성 스퍼트링으로 형성된 ITO의 유전채 소성에 따른 특성변화)

  • Nam, Sang-Ok;Chi, Sung-Won;Sohn, Je-Bong;Huh, Keun-Do;Cho, Jung-Soo;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1411-1413
    • /
    • 1997
  • The thin film that is electrically conductive and optically transparent is called conductive transparent thin film. ITO(Indium-Tin Oxide) which is a kind of conductive transparent thin film has been widely used in solar cell, transparent electrical heater, selective optical filter, FDP(Flat Display Panel) such as LCD (Liquid Crystal Display), PDP(Plasma Display Panel) and so on. Especially in PDP, ITO films is used as a transparent electrode in order to maintain discharge and decrease consumption power through the improvement of cell structure. In this study, we prepared ITO by reactive r.f. sputtering with indium-tin(Sn wt 10%) alloy target instead of indium-tin oxide target. The ITO films deposited at low temperature $150^{\circ}C$ and 8% $O_2$ partial pressure showed about $3.6{\Omega}/{\square}$. At the end of firing, the resistance of ITO was decreased, the optical transparence was improved above 90%.

  • PDF

Electrical Characteristics of PRAM Cell with Nanoscale Electrode Contact Size

  • Nam, Gi-Hyeon;Yun, Yeong-Jun;Maeng, Gwang-Seok;Kim, Gyeong-Mi;Kim, Jeong-Eun;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.282-282
    • /
    • 2011
  • Low power consuming operation of phase-change random access memory (PRAM) can be achieved by confining the switching volume of phase change media into nanometer scale. Ge2Sb2Te5 (GST) is one of the best materials for the phase change random access memory (PRAM) because the GST has two stable states, namely, high and low resistance values, which correspond to the amorphous and crystalline phases of GST, respectively. However, achieving the fast operation speed at lower current requires an alternative chalcogenide material to replace the GST and shrinking the dimension of programmable volume. In this paper, we have fabricated nanoscale contact area on Ge2Sb2Te5 thin films with trimming process. The GST material was fabricated by melt quenching method and the GST thin films were deposited with thickness of 100 nm by the electron beam evaporation system. As a result, the reset current can be safely scaled down by reducing the device contact area and we could confirmed the phase-change characteristics by applying voltage pulses.

  • PDF

Protection by Sunghyangchungisan against Hydrogen Peroxide-induced Increase in Endothelial Permeability (배양 혈관 내피세포에서 Hydrogen Peroxide에 의한 투과성 증가에 미치는 성향정기산의 효과)

  • 이동언;김영균;권정남
    • The Journal of Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.193-203
    • /
    • 2000
  • Objectives : Hindered barrier function of vascular endothelium has been implicated in the initiation and progression of degenerative vascular diseases such as atherosclerosis. In this study, the effect of Sunghyangchungisan(SHCS) as a protectant against oxidant-induced destruction of endothelial barrier function was assessed. Methods : Toward this end, endothelial cells derived from the human umbilical vein were cultured as monolayers on permeable membrane filters. Endothelial permeability was monitored by measuring transendothelial electrical resistance and movement of low density lipoprotein (LDL) across the endothelial monolayer. Results : Along with increased movement of LDL, $H_2O_2$-induced increase in endothelial permeability was paralleled by a decrease in transendotheliaI electrical resistance. The effect of $H_2O_2$ was mimicked by phorbol 12-myristate 13-acetate (PMA), a potent activator of proteinkinase C. Calphostin-C, a protein kinase C inhibitor, effectively blocked the increase in endothelial permeability induced by $H_2O_2$ or PMA, indicating that activation of protein kinase C is associated with the $H_2O_2-induced$ permeability change. SHCS effectively protected the endothelial monolayer against $H_2O_2-induced$ increase in permeability, whereas, it did not affect PMA-induced change. Forskolin, a potent activator of adenylyl cyclase, antagonized $H_2O_2$ to increase endothelial permeability. In addition, in ${H_2O_2}-treated$ cens, intracenular cAMP concentration was significantly decreased, indicating that impaired cAMP production as well as activation of proteinkinase C is a mechanism underlying ${H_2O_2}>-induced$$H_2O_2$ with regard to its effect on intracellular cAMP content. However, SHCS itself did not affect resting cAMP concentration in endothelial cells. Conclusions : These results suggest that SHCS might operate as an effective protectant against oxidant-induced destruction of endothelial barrier function. The mechanism does not appear to involve direct interaction with protein kinase C- or cAMP-associated signaling mechanism.

  • PDF

A Study for the Characteristics of multi-layer VOx Thin Films for Applying to IR Absorbing Layer (적외선 흡수층 응용을 위한 다층 산화 바나듐 박막의 특성에 관한 연구)

  • 박철우;문성욱;오명환;정홍배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.859-864
    • /
    • 2000
  • Recently IR detecting devices using MEMS have been actively studied. Microbolometer, one of these devices, detects the change of resistivity as the change of temperature of the device by absorbing IR, IR absorbing materials for microbolometer should have high TCR value and low noise characteristics which depends on resistivity. We fabricated multi-layer VOx thin films to improve the IR detectivity of uncooled IR devices and analyzed IR absorbing characteristics. We fabricated multi-layer VOx thin films by RF reactive sputtering method on SiNx substrate and changed characteristics using the different thickness of V and V$_2$O$\_$5/ thin films. Then we annealed them under 300$\^{C}$. The TCR (Temperature Coefficient of Resistance) measurement was carried out to estimate the IR detectivity of multi-layer VOx thin films. XRD (X-Ray Diffraction) analysis was carried out to estimate the IR detectivity of multi-layer VOx thin films. ZXRD (X-Ray Diffraction) analysis was used to find out phases and structures of V and V$_2$O$\_$5/ thin films. AES (Auger Electron Spectroscopy) analysis was used to find out composition of multi-layer VOx thin films before and after annealing. We obtained the optimum thickness range of V and V$_2$O$\_$5/ thin films from the result of AES analysis. We changed the thickness of V$_2$O$\_$5/ about 20 to 150 $\AA$ and thickness of V about 10 to 20 $\AA$. As the result of this, TCR value of multi-layer VOx thin films was about -2%/k and the resistivity was ∼1Ωcm.

  • PDF

Study on the Electrochemical Behavior of the Viologen Monolayers by Different Chemical Structure (분자구조에 따른 Viologen 단분자막의 전기화학적 특성 연구)

  • Ock, Jin-Young;Shin, Hoon-Kyu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.918-921
    • /
    • 2003
  • The electrochemical behavior of vilogen self-assembled monolayer has been investigated with QCM, which has been known as ng order mass detector. The self-assembly process of viologen was monitored using resonant frequency(${\Delta}F$) and resonant resistance(R). The QCM measurements indicated a mass adsorption for viologen assembling on the gold surface with a frequency change about 300, 135 Hz and calculated its surface coverage($\Gamma$) to be $5.02{\times}10^{-9}$ and $1.64{\times}10^{-9}mol/cm^2$. Also a reversible redox process was observed and analyzed with an ionic interaction at the Viologen/solution interface using ${\Delta}F$.

  • PDF

Study on the Thermal Dissipation Characteristics of 16-chip LED Package with Chip Size (16칩 LED 패키지에서 칩 크기에 따른 방열특성 연구)

  • Lee, Min-San;Moon, Cheol-Hee
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2012
  • p-n junction temperature and thermal resistance of Light Emitting Diode (LED) package are affected by the chip size due to the change of the thermal density and the external quantum efficiency considering the heat dissipation through conduction. In this study, forward voltage was measured for two different size LED chips, 24 mil and 40 mil, which consist constitute 16-chip package. p-n junction temperature and thermal resistance were determined by thermal transient analysis, which were discussed in connection with the electrical characteristics of the LED chip and the structure of the LED package.

Low Resistance SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET with 3.3kV Breakdown Voltage (3.3kV 항복 전압을 갖는 저저항 SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET)

  • Kim, Jung-hun;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.756-761
    • /
    • 2019
  • In this paper, we propose SC-SJ(Shielding Connected-Super Junction) UMOSFET structure in which p-pillars of conventional 4H-SiC Super Junction UMOSFET structures are placed under the shielding region of UMOSFET. In the case of the proposed SC-SJ UMOSFET, the p-pillar and the shielding region are coexisted so that no breakdown by the electric field occurs in the oxide film, which enables the doping concentration of the pillar to be increased. As a result, the on-resistance is lowered to improve the static characteristics of the device. Through the Sentaurus TCAD simulation, the static characteristics of proposed structure and conventional structure were compared and analyzed. The SC-SJ UMOSFET achieves a 50% reduction in on-resistance compared to the conventional structure without any change in the breakdown voltage.

Improved Load Sharing Rate in Paralleled Operated Lead Acid Batteries (납 축전지의 병렬운전시 부하분담률 개선)

  • 반한식;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy directly without a mechanical process. Unit cells are connected in series to obtain the required voltage, while being connected in parallel to organize capacity for load current and to decrease the internal resistance for corresponding the sudden shift of the load current. Because the voltage droop down in one set of battery is faster than in tow one, it amy result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However, when the system being driven in parallel, a circular-current can be generated. The changing current differs in each set of battery because the system including batteries, rectifiers and loads is connected in parallel and it makes the charge voltage constant. It is shown that, as a result the new batteries are heated by over-charge and over-discharge, and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper, we can detect the unbalance current using the micro-processor and achieve the balance current by adjusting resistance of each set. The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Evaluation of Multi-Level Memory Characteristics in Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 Cell Structure (Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 셀 구조의 다중준위 메모리 특성 평가 )

  • Jun-Hyeok Jo;Jun-Young Seo;Ju-Hee Lee;Ju-Yeong Park;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.88-93
    • /
    • 2024
  • To evaluate the possibility as a multi-level memory medium for the Ge2Sb2Te5/TiN/W-doped Ge2Sb2Te5 cell structure, the crystallization rate and stabilization characteristics according to voltage (V)- and current (I)- pulse sweeping were investigated. In the cell structures prepared by a magnetron sputtering system on a p-type Si (100) substrate, the Ge2Sb2Te5 and W-doped Ge2Sb2Te5 thin films were separated by a barrier metal, TiN, and the individual thicknesses were varied, but the total thickness was fixed at 200 nm. All cell structures exhibited relatively stable multi-level states of high-middle-low resistance (HR-MR-LR), which guarantee the reliability of the multilevel phase-change random access memory (PRAM). The amorphousto-multilevel crystallization rate was evaluated from a graph of resistance (R) vs. pulse duration (T) obtained by the nanoscaled pulse sweeping at a fixed applied voltage (12 V). For all structures, the phase-change rates of HR→MR and MR→LR were estimated to be approximately t<20 ns and t<40 ns, respectively, and the states were relatively stable. We believe that the doublestack structure of an appropriate Ge-Sb-Te film separated by barrier metal (TiN) can be optimized for high-speed and stable multilevel PRAM.

The study of phase-change with electric field on chalcogenide thin films (칼코게나이드 박막의 전기적 펄스에 의한 상변화 특성 연구)

  • Yang, Sung-Jun;Shin, Kyung;Lee, Ki-Nam;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.120-122
    • /
    • 2003
  • We have been investigated phase-change with temperature and electric field in chalcogenide $Ge_2Sb_2Te_5$ thin film. $T_c$(crystallization temperature) is confirmed by measuring the resistance and conductivity with the varying temperature on the hotplate. We have measured I-V characteristics with $Ge_2Sb_2Te_5$ chalcogenide thin film. It is compared with I-V characteristics after impress the variable pulse. The pulse has variable height and duration that used voltage and current source.

  • PDF