• Title/Summary/Keyword: Electrical power monitoring

Search Result 903, Processing Time 0.026 seconds

Development of Home Electrical Power Monitoring System and Device Identification Algorithm (가정용 전력 모니터링 시스템 및 장치식별 알고리즘 개발)

  • Park, Sung-Wook;Seo, Jin-Soo;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper presents an electrical power monitoring system for home energy management and an automatic appliance-identification algorithm based on the electricity-usage patterns collected during the monitoring tests. This paper also discusses the results of the field tests of which the proposed system was voluntarily deployed at 13 homes. The proposed monitoring system periodically measures the amount of power consumption of each appliance with a pre-specified time interval and effectively displays the essential information provided by the monitored data which is required users to know in order to save power consumption. Regarding the field tests of the monitoring system, the households responded that the system was useful in saving electricity and especially the electricity-usage patterns per appliances. They also considered that the predicted amount of the monthly power consumption was effective. The proposed appliance-identification algorithm uses 4 patterns: Zero-Crossing Rate(ZC), Variation of On State(VO), Slope of On State(SO) and Duty Cycle(DC), which are applied over the 2 hour interval with 25% of it on state, and it yielded 82.1% of success rate in identifying 5 kinds of appliances: refrigerator, TV, electric rice-cooker, kimchi-refrigerator and washing machine.

Remote-Controlled Experiment with Integrated Verification of Learning Outcome

  • Staudt, Volker;Menzner, Stefan;Baue, Pavol
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.604-610
    • /
    • 2010
  • Experiments in electrical engineering should mirror the key components of successful research and development: Understand the basic theory needed, test the resulting concepts by simulation and verify these, finally, in the experiment. For optimal learning outcome continuous monitoring of the progress of each individual student is necessary, immediately repeating those subjects which have not been learned successfully. Classically, this is the task of the teacher. In case of remote-controlled experiments this monitoring process and the repetition of subjects should be automated for optimal learning outcome. This paper describes a remote-controlled experiment combining theory, simulation and the experiment itself with an automated monitoring process. Only the evaluation of the experimental results and their comparison to the simulation results has to be checked by a teacher. This paper describes the details of the educational structure for a remote-controlled experiment introducing active filtering of harmonics. For better understanding the content of the learning material (theory and simulation) as well as the results of the experiment and the underlying booking system are shortly presented.

BILBO Network: a proposal for communications in aircraft Structural Health Monitoring sensor networks

  • Monje, Pedro M.;Aranguren, Gerardo
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.293-308
    • /
    • 2014
  • In the aeronautical environment, numerous regulatory and communication protocols exist that cover interconnection of on-board equipment inside the aircraft. Developed and implemented by the airlines since the 1960s, these communication systems are reliable, strong, certified and able to contact different sensors distributed throughout the aircraft. However, the scenario is slightly different in the structural health monitoring (SHM) field as the requirements and specifications that a global SHM communication system must fulfill are distinct. The number of SHM sensors installed in the aircraft rises into the thousands, and it is impossible to maintain all of the SHM sensors in operation simultaneously because the overall power consumption would be of thousands of Watts. This design of a new communication system must consider aspects as management of the electrical power supply, topology of the network for thousands of nodes, sampling frequency for SHM analysis, data rates, selected real-time considerations, and total cable weight. The goal of the research presented in this paper is to describe and present a possible integration scheme for the large number of SHM sensors installed on-board an aircraft with low power consumption. This paper presents a new communications system for SHM sensors known as the Bi-Instruction Link Bi-Operator (BILBO).

A Development of Intelligent Metering and Control System for Energy Management of Electric Cabinet Panel (분전반 전력관리용 지능형 계측 제어 시스템 개발)

  • Park, Byung-Chul;Park, Jae-Sung;Song, Sung-Kun;Shin, Joong-Rin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.90-97
    • /
    • 2013
  • In recent years, the many electric saving methods are studied because of difficulty of meeting the demand. The electric energy management such as monitoring of branch power consumption, demand control, metering, power quality monitoring, electric safety monitoring can make energy saving. The purpose of this paper is to develop a system which can provide the integrated management of various functions required for energy management by consumers. In this system all functions which were embodied into each devices are integrated into intelligent meter. The developed systems are tested and implemented by installing at consumer electric distribution panel.

Real-Time Monitoring and Analysis of Power Systems with Synchronized Phasor Measurements

  • Kim, Hong-Rae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.101-108
    • /
    • 2007
  • State estimators are used to monitor the operating states of power systems in modern EMS. It iteratively calculates the voltage profile of the currently operating power system with voltage, current, and power measurements gathered from the entire system. All the measurements are usually assumed to be obtained simultaneously. It is practically impossible, however, to maintain the synchronism of the measurement data. Recently, phasor measurements synchronized via satellite are used for the operation of these power systems. This paper describes the modified state estimator used to support the processing of synchronized phasor measurements. Synchronized phasor measurements are found to provide synchronism of measurement data and improve the accuracy/redundancy of the measurement data for state estimation. The details of the developed state estimation program and some numerical results of operation are presented.

Protective Insulation Monitoring Device in IT Earth Systems (IT접지방식의 보호를 위한 활선절연저항 감시기)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.209-213
    • /
    • 2015
  • With the increasing popularity of renewable generation systems and the advancement of power electronics, DC distribution systems have recently received considerable research attention. DC distribution has numerous advantages, including reliability, power quality, and efficiency. Owing to these advantages, DC distribution has been applied to data centers and power quality-sensitive electronic load conditions. Because grounding electrodes in DC are much more susceptible to corrosion than in AC, the IT system defined in IEC Standard 60364 may be a good candidate for an earthing method for DC distribution systems. In addition, IEC Standard 61557 specifies the requirements for insulation monitoring devices (IMD) for protection of the IT system, which continuously monitors the insulation resistances between the power lines and the earth. This paper discusses the development and evaluation of IMD to promote the reliability of distribution systems and increase safety of humans and facilities.

A Virtual Instrumentation System Based on Three-Dimensional Current Coordinates for Monitoring Power Quality (전력품질 모니터링을 위한 3차원 전류 좌표계 기반의 가상 계측 시스템)

  • 정영국;임영철;김영철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.124-132
    • /
    • 2003
  • The goal of this paper is to propose a virtual instrumentation system based on three dimensional current coordinates for monitoring power quality A developed system with various experimental graphic screens and numerical results is made up 586-PC and DSP(digital signal processor) board, power quality analyzing and evaluating software for windows. Power parameters are analyzed using correlation signal processing techniques based on the correlation between voltage and current waveforms. Analysis. results are visualized by 3-D current coordinates, and it Is compared and evaluated with conventional time / frequency domain. To verify the validity of the proposed system, power and harmonic parameters of single phase induction motor drives is analyzed and verified.

Application of On-line Diagnostic System for Oil-filled Power Transformers (대용량 변압기 예방진단 시스템 적용 사례)

  • Kim Y.H.;Lee C.R.;Hwangbo S.W.;;Shin Y.T.;Park K.S.;Lee J.B.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.590-593
    • /
    • 2004
  • This paper presents recent trends on the on-line monitoring and diagnostic systems for oil-immersed transformers. Specially, our system on YeoSu thermal power plant is introduced for high sensitivity and accuracy of ours. It is combined with communication networks to provide an on-line remote monitoring system. Several alarm criteria are formulated to enable a superimposed monitoring system to perform decisive action. The reasons for monitoring the condition and maintaining the health of electrical apparatus were discussed. The experience at the fields and the criteria for the judgment are also discussed in detail.

  • PDF

A Development and Performance Assessment of On-Line Monitoring System for Optical Fiber Composite Underground Distribution Network using DTS (DTS를 활용한 광복합 지중 배전계통 실시간 감시시스템 개발 및 성능평가)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Cho, Hwi-Chang;Choi, Myeong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.115-121
    • /
    • 2011
  • Intelligent distribution equipment is inevitable to realize self-healing which is one of smart grid functions in distribution network. Therefore, most of distribution equipment have been developed with self diagnostic sensors. However, it is not effective to construct on-line monitoring system for underground distribution cable because of high cost and low sensitivity. Recently, optical fiber composite cable is being considered for communication and power delivery in order to cope with increasing communication in distribution network. This paper presents the design and performance assessment results of underground cable on-line monitoring system using DTS(Distributed Temperature Sensing) and optical fiber composite underground cable.