• Title/Summary/Keyword: Electrical grounding

Search Result 615, Processing Time 0.033 seconds

Analysis of Risk Voltage for Grounding Electrode by Injection of Earth Leakage Current

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon;Kil, Gyung-Suk
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • This paper describes analysis of risk voltage for grounding electrode where earth leakage current is injected. To assess risk voltage of grounding electrode, the grounding simulator and CDEGS program were used to obtain measured data and theoretical results of this study. The grounding simulator was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The shapes of grounding electrode model was ground rod. The potential rise was measured by grounding simulator, and the touch and step voltages were computed by CDEGS program. As a consequence, the potential rise of ground rod abruptly decreases with increasing the distance from the grounding electrode to the point to be tested. The touch voltage above the ground rod was low, but the step voltage was high. The measured results were compared with the computer calculated data and were known in good agreement.

Distribution of Potential Rise as a Function of Shape of Grounding Electrodes

  • Gil, Hyoung-Jun;Choi, Chung-Seog;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.73-79
    • /
    • 2007
  • In order to analyze the potential rise of grounding systems installed in buildings, a hemispherical grounding simulation system was studied. Potential rise was measured and analyzed regarding the shape and distance of the grounding electrodes by using this system. The system was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The potential rise was measured in real time by the horizontal moving probe of be potentiometer. The test grounding electrodes were fabricated through reducing the grounding electrode installed in real buildings such as the ground rod, grounding grid and so on. The potential rise was displayed in a two-dimensional profile and was analyzed regarding the shapes of the ground electrodes. The potential rise of the grounding grid combined with a ground rod was the lowest of every grounding electrode tested. The proposed results can be applicable to evaluating ground potential rise in grounding systems, and the analytical data can be used to stabilize the electrical installations and prevent electrical disasters.

Study of Touch and Step Voltages with Grounding Grid Using Electrolytic Tank and Analysis Program

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Kill, Gyung-Suk
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • In order to analyze the potential rise of ground surface of grounding grid installed in buildings, the grounding simulator has been designed and fabricated as substantial and economical measures. This paper describes the study of touch and step voltages with grounding grid where earth leakage current is injected. To assess risk voltage of grounding grid, the grounding simulator and CDEGS program were used to obtain measured data and theoretical results of this study. The grounding simulator was composed of an electrolytic tank, AC power supply, a movable potentiometer, and test grounding electrodes. The potential rise was measured by grounding simulator, and the touch and step voltages were computed by CDEGS program. As a consequence, the touch voltage and step voltage above the grounding grid were very low, but were significantly increased near the edge of grounding grid.

A CONCEPTUAL DESIGN FOR ELECTRICAL GROUNDING ARCHITECTURE OF KOREAN SPACE LAUNCH VEHICLE

  • Kim Kwang-Soo;Lee Soo-Jin;Ma Keun-Soo;Shin Myoung-Ho;Hwang Seung-Hyun;Ji Ki-Man;Chung Eui-Seung
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.231-234
    • /
    • 2004
  • Electrical grounding is defined as referencing an electrical circuit or a common reference plane for preventing shock hazards and for enhancing operability of the circuit and EMI control. In order to realize the best electrical grounding system of korean space launch vehicle, we should design the electrical grounding architecture of korean space launch vehicle of system-level at the earliest point in design procedure. To minimize the electrical grounding loop and the unnecessary electromagnetic interference or radiation among the electronic subsystems, we should establish the electrical grounding rules of the all electrical interfaces. The electrical interfaces among the electronic subsystems are generally classified into the electrical power and signal interfaces. Because of using the primary and secondary power system architecture in the korean space launch vehicle system such as the common space launch vehicle systems, we need to establish the electrical grounding rules between the primary and secondary power system. We also need to establish the electrical signal grounding interface rules among the electronic subsystems. In this paper, we will describe the grounding schemes of the common space launch vehicle system and propose a conceptual design for the electrical grounding architecture of korean space launch vehicle system.

  • PDF

The Analysis of Ground Potential Rise for Shapes of Grounding Electrode Using Hemispherical Grounding Simulation System (반구형 접지모의시스템을 이용한 접지전극의 형상에 따른 대지전위상승의 분석)

  • Gil Hyoung-Jun;Choi Chung-Seog;Lee Bok-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.319-325
    • /
    • 2005
  • In order to analyze ground potential rise of grounding system installed in buildings, the hemispherical grounding simulation system has been designed and fabricated as substantial and economical measures. Ground potential rise(GPR) has been measured and analyzed for shapes of grounding electrode using the system in real time. The system is apparatus to have a free reduced scale for conductor size and laying depth of a full scale grounding system and is constructed so that a shape of equipotential surface is nearly identified a free reduced scale with a real scale when a current flows through grounding electrode. The system was composed of a hemispherical water tank, AC Power supply, a movable potentiometer, and test grounding electrodes. The test grounding electrodes were fabricated through reducing grounding electrode installed in real buildings such as rod type, mesh grid type. When a mesh grid type was associated with a rod type, GPR was the lowest value. The proposed results would be applicable to evaluate GPR in the grounding systems. and the analytical data can be used 0 stabilize the electrical installations and prevent the electrical disasters.

A Study on the Secular Change Characteristics of Grounding Systems (접지계의 경년변화 특성에 관한 연구)

  • Kim Jae-Yee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.224-226
    • /
    • 2005
  • In this paper, the secular changes of buried grounding electrodes was investigated; the electrodes are such facilities as grounding grid, grounding connector, grounding terminal and grounding rod etc.. The corrosiveness of removed substation grounding electrodes after commercial operation more than 50 years was measured and its conductivity deterioration trend was analyzed. The measuring results using three experimental methods were compared, finally the consideration for safe and economic grounding design were shown. As the result, it shows the maintenance necessity of grounding systems.

Comparison of Individual and Common Grounding Method for Potential Rise (전위상승에 대한 독립접지방식과 공통접지방식의 비교)

  • Gil, Hyoung-Jun;Kim, Dong-Ook;Kim, Dong-Woo;Lee, Ki-Yeon;Choi, Chung-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2006.05a
    • /
    • pp.41-43
    • /
    • 2006
  • This paper deals with a comparison of individual and common grounding method for potential rise. When a test current flowed through grounding electrode, potential rise was measured and analyzed for grounding method using a electrolytic tank in real time. The grounding electrodes were designed and fabricated with ground rods on a scale of one-eightieth. Potential rises of individual grounding method were higher than those of common grounding method. The distributions of surface potential are dependent on the distance from grounding electrode.

  • PDF

Assessment of Electrical Safety for Grounding System by Investigation on the Spot (현장조사에 의한 접지시스템의 전기안전성 평가)

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.361-364
    • /
    • 2008
  • This paper deals with assessment of electrical safety for grounding system of buildings by investigation on the spot at construction site. The investigation was carried out for grounding method, grounding type, shape of grounding electrode, grounding for lightning protection system, continuity of steelwork in reinforced concrete structure and so on. The investigation on the spot was performed by researcher, engineer with over fifteen years of industry experience all over the country. As a result of investigation on the spot to 13 buildings, common grounding method was dominant. A new grounding system based on international standards includes unity grounding system, structure grounding utilizing steel reinforced concrete, equipotential bonding. use of surge protective device.

  • PDF

Analysis for the Grounding Impedance of Vertical Grounding Electrodes using the Distributed Parameter Circuit Model (분포정수회로모델을 이용한 수직 접지전극의 접지임피던스의 분석)

  • Lee, Bok-Hee;Kim, Jong-Ho;Choi, Jong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1103-1108
    • /
    • 2010
  • A grounding electrode has the transient grounding impedance characteristics against lightning surges. So the performance of grounding electrodes should be evaluated as a grounding impedance as well as the ground resistance. The frequency-dependent grounding impedance is varied with the shape and size of grounding electrode and is divided into both inductive and capacitive behaviors. This paper presents a theoretical analysis for the grounding impedance determined by the size of grounding electrode using the distributed parameter circuit model. EMTP and Matlab programs were used in calculating the frequency-dependent grounding impedances of vertical grounding electrodes. It was found that the frequency-dependent grounding characteristics of vertical grounding electrodes are characterized by the distributed parameters which are changed in the dimension of grounding electrodes.

A Simulator for Potential Distribution Analysis

  • Kil, Gyung-Suk;Gil, Hyong-Jun;Park, Dae-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.225-229
    • /
    • 2012
  • This paper proposes a reduced-scale simulator that can replace numerical analytic methods for the estimation of potential distribution caused by ground faults in various grounding systems. The simulator consists of a hemispherical electrolytic tank, a three-dimensional potential probe, a grounding electrode, and a data acquisition module. The potential distribution is measured using a potentiometer with a position-tracing function when a test current flows to the grounding electrode. Using the simulator, we could clearly analyze the potential distribution for a reduced- scale model by one-eightieth of the buried depth and length of the grounding rod and grounding grid. Once both the shape of the grounding electrode and the fault current are known, the actual potential distribution can be estimated.