• Title/Summary/Keyword: Electrical fire case analysis

Search Result 56, Processing Time 0.019 seconds

A Study on Analysis on an Automotive Fire Case that Broke Out due to an Electrical Cause during Engine Stopping (엔진정지 중 전기적인 원인에 의해 발생한 자동차화재의 분석 연구)

  • Lee, Euipyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Although it is widely accepted that a fire can occur due to electrical causes even when an engine stops, there is little introduction of detailed case analysis. This study analyzed a fire case caused by an electrical cause during engine stopping at parking lot in detail. Moreover, it was revealed that the fire was mainly caused by design defect.

A Study on Fire Investigation Technique For Single Line to Ground Faults in Distribution Line Using EMTP Simulation (EMTP 시뮬레이션을 통한 배전선로의 1선 지락 사고시 화재 조사 기법에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hie Sik;Lee, Hoon Gi;Cho, Yong Sun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • Approximately 20% of the total fire is electrical fire, and electrical energy is a potential source of heat. Large-scale fault currents that occur during a line ground fault flow into electric utility poles, electric power equipment, or electric appliances of the customer, and cause simultaneous electrical fire. In this paper, we investigated the possibility of fire through the change of fault current flowing in faulty and sound feeder in case of 1 line ground fault in 22.9 kV distribution line. We propose a fire investigation analysis method for simultaneous multiple electrical fire such as evidence analysis method, and fault current occurrence confirmation method in case of fire accident by analyzing the fault current occurring in the ground fault in the distribution line using EMTP, electric power system analysis program.

The Infrastructure Case for Reproduction or Analysis of The Mechanism on The Fire of The Electrical Appliances (가전제품 화재 메커니즘 재현 및 분석을 위한 인프라 구축)

  • Jang, In-Hyeok;Lee, Chang-Hoon;Lee, Young-Joo;Lim, Hong-Woo
    • Journal of Applied Reliability
    • /
    • v.15 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • In this paper, The infrastructure case for reproduction or analysis of the mechanism on the fire or the electrics shock of the electrical appliances is proposed. The various electrical appliances(Washing machine, Ballast, Electric heaters, Electronic switches, Mobile phone chargers) used in the home can be tested on the high voltage and over current test through the implementation of the infrastructure. The electrical tests of fire and electric shock consists of the high voltage of maximum 5000 V and over current test of 3 steps(90 A, 60 A, 40 A) and noise test. The mechanism of the fire and the electric shock tests reproduced are analyzed through the monitoring system and the oscilloscope. The electronics manufacturers can prevent accidents through the tests of the electronics factor reproduced and the analysis of the infrastructure designed.

A Study on the Causal Analysis of Electrical Fire by Using Fuse (퓨즈를 이용한 전기화재의 원인분석에 관한 연구)

  • Lee, Chun-Ha;Kim, Shi-Kuk;Ok, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2008
  • This paper studied on the causal analysis of electrical fire by using fuse that it is used with safety device in electrical products. The experimental samples used are glass tube fuse(15 A, $5{\times}20mm$) and temperature fuse(10 A, $72^{\circ}C$). The experiment analyzed on the characteristics of damaged fuse by main causes(short circuit, overload, external flame) of electrical fire. The results showed, in case of glass tube fuse identified different characteristics in external form and element surface and element texture of damaged fuse by main causes of electrical fire. In case of temperature fuse identified different characteristics in external form and sliding contact surface and sliding contact texture of damaged fuse only by external flame.

Analysis of a Fire Case Caused by Heat Generation due to Cu2O Breeding (아산화동증식 발열에 의한 화재 사례의 분석)

  • Park, Jin-Young;Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.54-63
    • /
    • 2020
  • Although fires caused by heat generation due to Cu2O breeding in wire connections are well-known among fire investigators, there are few papers on the analysis and introduction of fire cases by heat generation due to Cu2O breeding. This study analyzed fire statistics caused by heat generation in electrical connections and the phenomena and features of heat generation due to Cu2O breeding. Then, a fire which occurred in the wire connection in a university lab by heat generation due to Cu2O breeding was analyzed in more detail. This fire case could reach a conclusion that heat generation due to Cu2O breeding caused a fire in the wire connection through the fire pattern investigation of fire origin, the visual investigation of wire connection, 3D CT, power-on-test, and stereoscopic microscopy, SEM and EDS analysis.

A Study on the Fire Case Analysis of Air Conditioner and Preventive Measures (에어컨 화재사례 분석 및 예방대책에 관한 연구)

  • Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Dong-Woo;Gil, Hyung-Jun;Bang, Sun-Bae;Chung, Young-Sik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.40-45
    • /
    • 2013
  • In recent years, many electrical fires have occurred due to complex causes. Therefore, products are required to make with scientific design considering electrical, thermal, mechanical and environmental influences. Disasters can cause losses of life and property with fall in confidence of countries and companies. And demands for safe product have been increased by reason of recent deregulation followed by limitless competition. It is necessary to design safe product in order to improve corporate image and strengthen international competitive power. This paper addresses electrical fire case of air conditioner. The use of air conditioner have recently increased as a result of global warming. The aim of this study is to provide safety design and fire prevention measures of air conditioner through cause analysis and reappearance experiments.

Analysis of Installation Environment and Fire Risk of Induction Motors Installed in the Curing Process of a Rubber Product Manufacturing Plant (고무제품제조공장의 가류공정에 설치된 유도전동기의 설치환경 및 화재위험성 분석)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.23-29
    • /
    • 2023
  • This study analyzed the fire status of a rubber product manufacturing factory based on 19 years of fire data. Through the analysis of the current state of fire, electrical fires accounted for 58.19%, and among electrical fires, motor fires were the highest at 26.21%. For the motor fire occurrence process, the curing process accounted for the highest rate of 51.9%. Therefore, the installation environment was investigated for the motor in the curing process, and it was confirmed that the motor's maximum ambient temperature exceeded 40℃. In particular, in the case of the motor for curing operation, the motor was installed in a separate motor room, so the average indoor temperature was 48.10℃ and the motor frame's maximum temperature was 72.80℃. In this study, the risk of motor fire was confirmed through a field survey, and a safety management plan was derived by finding a process with high fire risk and conducting an experiment on the motor's installation environment and electrical characteristics in that process.

Mechanism analysis through Water fire case (정수기 화재발생 사례를 통한 재현실험)

  • Lee, Jeong-Il
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.593-618
    • /
    • 2011
  • Development of the economy and the growing income of people interested in the leisure and health has been focused. Past the town common wells and groundwater around the water, but health is a priority these days to solve the drinking water directly from tap water, but most people work from home, through the water purifier has been resolved. Depending on seasonal changes and personal taste of coffee, if you can enjoy a snack and water purifier is a restaurant, lounge, public areas and focusing on the rapid spread of the fire, water purifier as compared to the total number of fires increased by 0.03% per year trend on, but the washrooms fire and fire-related research data and case studies with analysis of the exact cause lack of proper preventive measures are insufficient reality. In this study, focusing on electrical energy using a water cooler to understand the structure and principles of fire, the fire revealed the mechanism is vulnerable to the consideration of factors, the exact cause of the fire investigation and the Assistant, manufacturing defects, and to contribute to fire prevention review should.

  • PDF

A Experimental Study on the Heat Release Rate to activate Fire Detection Sensor (화재감지 센서 작동시간 및 열방출률에 대한 실험연구)

  • Hong, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1358-1361
    • /
    • 2012
  • This paper presents a study on the analysis for activation time and threshold value of heat detection sensor using HRR(Heat Release Rate). And it is represented to quantity of heat to activate heat detection sensor. The experiment is conducted to measure activation time and HRR of fire detection sensor burning alcohol and n-heptane. In order to burn the alcohol and n-heptane using $43.5cm(L){\times}43.5cm(W){\times}5cm(D)$ and $33cm(L){\times}33cm(L){\times}5cm(D)$ steel pan and the quantity of alcohol and n-heptane are 2.5 L and 650 g, respectively. The results show that peak HRR are in case of alcohol 66.13 kW and in case of n-heptane 151.64 kW, respectively. Total heat releases of heat detection sensor are in case of alcohol approximately 20.7 MJ and in case of n-heptane approximately 18 MJ, respectively.

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.