• Title/Summary/Keyword: Electrical fast transient

Search Result 211, Processing Time 0.022 seconds

Fast Transient Buck Converter Using a Hysteresis PWM Controller

  • Liu, Yong-Xiao;Zhao, Jin-Bin;Qu, Ke-Qing
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.991-999
    • /
    • 2013
  • In this paper, a fast transient buck converter using hysteresis PWM control is presented. The proposed control method is based on hysteresis control of the capacitor C voltage. This offers a faster transient response to meet the challenges of the power supply requirements for fast dynamic input and load changes. It also provides better stability and solves the compensation problem of the error amplifier in conversional voltage PWM control. Finally, the steady-state and dynamic operation of the proposed control method are analyzed and verified by simulation and experimental results.

A Fast Low Dropout Regulator with High Slew Rate and Large Unity-Gain Bandwidth

  • Ko, Younghun;Jang, Yeongshin;Han, Sok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.263-271
    • /
    • 2013
  • A low dropout regulator (LDO) with fast transient responses is presented. The proposed LDO eliminates the trade-off between slew rate and unity gain bandwidth, which are the key parameters for fast transient responses. In the proposed buffer, by changing the slew current path, the slew rate and unity gain bandwidth can be controlled independently. Implemented in $0.18-{\mu}m$ high voltage CMOS, the proposed LDO shows up to 200 mA load current with 0.2 V dropout voltage for $1{\mu}F$ output capacitance. The measured maximum transient output voltage variation, minimum quiescent current at no load condition, and maximum unity gain frequency are 24 mV, $7.5{\mu}A$, and higher than 1 MHz, respectively.

A New Algorithm for Unstable Mode Decision in the On-line Transient Stability Assessment (온라인 과도안정도 평가를 위한 새로운 불안정모드 선정 알고리즘)

  • Chang, Dong-Hwan;Kim, Jung-Woo;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1123-1128
    • /
    • 2008
  • The necessity of online dynamic security assessment is getting apparent under Electricity Market environments, as operation of power system is exposed to more various operating conditions. For on-line dynamic security assessment, fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices and energy margin. The method is a new version of our previous paper.[1] Case studies are showing very promising results.

Fast-Transient Repetitive Control Strategy for a Three-phase LCL Filter-based Shunt Active Power Filter

  • Zeng, Zheng;Yang, Jia-Qiang;Chen, Shi-Lan;Huang, Jin
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.392-401
    • /
    • 2014
  • A fast-transient repetitive control strategy for a three-phase shunt active power filter is presented in this study to improve dynamic performance without sacrificing steady-state accuracy. The proposed approach requires one-sixth of the fundamental period required by conventional repetitive control methods as the repetitive control time delay in the synchronous reference frames. Therefore, the proposed method allows the system to achieve a fast dynamic response, and the program occupies minimal storage space. A proportional-integral regulator is also added to the current control loop to eliminate arbitrary-order harmonics and ensure system stability under severe harmonic distortion conditions. The design process of the corrector in the fast-transient repetitive controller is also presented in detail. The LCL filter resonance problem is avoided by the appropriately designed corrector, which increases the margin of system stability and maintains the original compensation current tracking accuracy. Finally, experimental results are presented to verify the feasibility of the proposed strategy.

A Fast Screening Algorithm for Transient Stability Assessment of Large Power Systems (대규모계통 과도 안정도 평가를 위한 상정사고 고속스크리닝 알고리즘)

  • Yang, Jung-Dae;Lee, Jong-Seock;Lee, Byung-Jun;Kwon, Sae-Hyuk;Lee, Koung-Guk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.69-71
    • /
    • 2000
  • Transient Stability of a power systems is its ability to maintain synchronous operation of machine when subjected to a large disturbance. This paper presents a new methodology for speed-up transient stability evaluation in SIME. SIME is a hybrid direct method including time simulation to enhance flexibility. It is difficult to apply the classical SIME to stable cases. To solve this problem, we propose the improved SIME, applicable to stable cases as well as unstable cases. For more fast screening, a reduced order equivalent generator is used in the first step process

  • PDF

A Novel Discrete predictive current control for PM-LSM (PM-LSM에 대한 새로운 예측 전류 제어)

  • Sun Jung-Won;Suh Jin-Ho;Lee Young Jin;Lee Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1220-1222
    • /
    • 2004
  • In this paper, we propose a new discrete-time predictive current controller for a PM-LSM(permanent magnet linear synchronous motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. A new control strategy is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking and is proposed simplified calculation. Moreover, the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF

A Novel Algorithm for Fault Type Fast Diagnosis in Overhead Transmission Lines Using Hidden Markov Models

  • Jannati, M.;Jazebi, S.;Vahidi, B.;Hosseinian, S.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.742-749
    • /
    • 2011
  • Power transmission lines are one of the most important components of electric power system. Failures in the operation of power transmission lines can result in serious power system problems. Hence, fault diagnosis (transient or permanent) in power transmission lines is very important to ensure the reliable operation of the power system. A hidden Markov model (HMM), a powerful pattern recognizer, classifies events in a probabilistic manner based on fault signal waveform and characteristics. This paper presents application of HMM to classify faults in overhead power transmission lines. The algorithm uses voltage samples of one-fourth cycle from the inception of the fault. The simulation performed in EMTPWorks and MATLAB environments validates the fast response of the classifier, which provides fast and accurate protection scheme for power transmission lines.

A Novel Method for Clustering Critical Generator by using Stability Indices and Energy Margin (안정도 지수와 에너지 마진을 이용한 불안정 발전기의 clustering 법)

  • Chang Dong-Hwan;Jung Yun-Jae;Chun Yeonghan;Nam Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.441-448
    • /
    • 2005
  • On-line dynamic security assessment is becoming more and more important for the stable operation of power systems as load level increases. The necessity is getting apparent under Electricity Market environments, as operation of power system is exposed to more various operating conditions. For on-line dynamic security assessment, fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices. Case study shows very promising results.

A New Stabilizing Method for Transiently Unstable Systems by Using Transient Energy Function (에너지함수를 이용한 과도불안정 시스템의 안정화 방법)

  • Kim, Jung-Woo;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.567-575
    • /
    • 2008
  • Transient security assessment(TSA) is becoming an essential requirement not only for security monitoring but also for stabilizing control of power systems under new electricity environments. It has already been pointed out that fast transient stability study is an important part for monitoring and controlling system security. In this paper, we discuss an energy function method for stabilizing control of transiently unstable systems by introducing generator tripping system to enhance the transient stability of power systems. The stabilization with less tripped power can be obtained by tripping the generators faster than out-of-synchronism relay. Fast transient stability assessment based on the state estimation and direct transient energy function method is an important part of the stabilizing scheme. It is possible to stabilize the transiently unstable system by tripping less generators before the action of out-of-synchronism relay, especially when a group of generator are going to be out-of-synchronism. Moreover, the amount of generator output needed for tripping can be decided by Transient Energy Function(TEF) method. The main contribution of this paper is on the stabilizing scheme which can be running in the Wide Area Control System.

Analysis of Transient Overvoltages within a 345kV Korean Thermal Plant

  • Yeo, Sang-Min;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.297-303
    • /
    • 2012
  • This paper presents the simulation results for the analysis of a lightning surge, switching transients and very fast transients within a thermal plant. The modeling of gas insulated substations (GIS) makes use of electrical equivalent circuits that are composed of lumped elements and distributed parameter lines. The system model also includes some generators, transformers, and low voltage circuits such as 24V DC rectifiers and control circuits. This paper shows the simulation results, via EMTP (Electro-Magnetic Transients Program), for three overvoltage types, such as transient overvoltages, switching transients, very fast transients and a lightning surge.