• Title/Summary/Keyword: Electrical excited synchronous motor

Search Result 16, Processing Time 0.022 seconds

A Study on Stabilization of Multi-Excited Induction Motor (다중여자 유도전동기의 안정도에 관한 연구)

  • 강만원;김한성
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.78-85
    • /
    • 1995
  • This paper covers stability and stabilization of Multi-Excited Induction Motor used in numberous electric equipment system of industrial field. The induction motor with multi-excitation has tow sets of three-phase system : One is connected to the AC source to supply most power required at the load, and the other is to the inverter for variable frequency and/or magnitude of voltage. The conventional induction motor is operated under single excitation mode only, that is called induction mode. But in multi-excited induction motor both the induction mode and the synchronous mode are possible, and the proposed multi-excited induction motor can be driven as a synchronous motor by the extra three-phase input. At the synchronous mode the efficiency is improved so higher than that at induction mode or conventional induction motor. The rating of the inverter used for speed control of numberous electric equipment system can be reduced upto one-tenth of that for conventional induction motor. Also the cost and maintenance fee of multi-excited induction motor can be reduced compared to any other motor.

  • PDF

Performance Evaluation of Slotless Permanent Magnet Linear Synchronous Motor Energized by Partially Excited Primary Current

  • Jung, Sang-Yong;Chun, Jang-Sung;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.86-92
    • /
    • 2001
  • This paper is presented for evaluating the performance of slotless Permanent Magnet Linear Synchronous Motors (PMLSM) Which is energized by partially excited primary current. Especially the influence of end-effect due to the moving magnet is investigated in detail. Also partial excitation of primary current for better efficiency and its switching behavior are suggested Capability of PMLSM which is related to speed-force feasibility judging whether motor can meet the desired specifications in the dynamics are investigated. Furthermore control characteristics of PMLSM are considered to verify the validity of dynamic capability in running condition.

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.564-569
    • /
    • 2012
  • This paper proposes a hybrid-excited linear synchronous motor (LSM) that has potential applications in a magnetically levitated vehicle. The levitation and thrust force characteristics of the LSM are investigated by means of three-dimensional (3-D) numerical electromagnetic FEM calculations and experimental verification. Compared to a conventional LSM with electromagnets, a hybrid-excited LSM can improve levitation force/weight ratios, and reduce the power consumption of the vehicle. Because the two-dimensional (2-D) FE analysis model describes only the center section of the physical device, it cannot express the complex behavior of leakage flux, which this study is able to predicts along with levitation and thrust force characteristics by 3-D FEM calculations. A static force tester for a hybrid-excited LSM has been manufactured and tested in order to verify these predictions. The experimental results confirm the validity of the 3-D FEM calculation scheme for the description of a hybrid-excited LSM.

Coordination Control of Multiple Electrical Excited Synchronous Motors and Its Application in High-Power Metal-Rolling Systems

  • Shang, Jing;Nian, Xiaohong;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1781-1790
    • /
    • 2016
  • This study focuses on the coordination control problem of multiple electrical excited synchronous motor systems. A robust coordination controller is designed on the basis of cross coupling and an interval matrix. The proposed control strategy can deal with load uncertainty. In addition, the proposed control strategy is applied to a high-power metal-rolling system. Simulation and experiment results demonstrate that the proposed control strategy achieves good dynamic and static performance. It also shows better coordination performance than traditional proportional-integral controllers.

Analysis of Doubly-Excited Induction Motor (이중여자 유도전동기의 해석)

  • Kang, Man-Won;Kim, Han-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1095-1097
    • /
    • 1993
  • The double excited induction motor has two sets of three-phase system : One is connected to the ac source to take care of energy convertion, and the other is to the inverter controlable frequency and/or magnitude of voltage, both of the induction mode and the synchronous mode are possible in double excitation motor, and the proposed double excitation motor can be driven as a synchronous motor by the extra three-phase input. At the synchronous mode the efficiency is improved so higher than that at induction mode or induction motor. The rating of the inverter used for speed control can be reduced upto one-fifth of that for conventional induction motor. Also the cost and maintenance fee of double excitation induction motor can be reduced compared to any other motors.

  • PDF

Hunting Protection of Synchronous Motor by Field Control (계자제어에 의한 동기전동기의 난조방지)

  • Song Yop Hahn
    • 전기의세계
    • /
    • v.20 no.2
    • /
    • pp.19-26
    • /
    • 1971
  • To proteting hunting of synchronus motor a new one which has two field windings is designed. One is main field winding excited constantly and the other is control field winding excited only during the load of motor changes. The oscillation of the motor is controlled by increasing or decreasing the control field excitation. To determine the optimal field excitation the Pontryagin's minimum principle is applied. Also this paper gives the optimal trajectories of the motor and it's transition time. This motor has some of better properties than the old motor with damper winding. These phroperties are (1) there is no hunting (2) the transient stability is improved (3) transition time is very short.

  • PDF

Control of Electrically Excited Synchronous Motors with a Low Switching Frequency

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng;Fu, Xiao
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.615-622
    • /
    • 2012
  • The switching frequency of the power electronic devices used in large synchronous motor drives is usually kept low (less than 1 kHz) to reduce the switching losses and to improve the converter power capability. However, this results in a couple of problems, e.g. an increase in the harmonic components of the stator current, and an undesired cross-coupling between the magnetization current component ($i_m$) and the torque component ($i_t$). In this paper, a novel complex matrix model of electrically excited synchronous motors (EESM) was established with a new control scheme for coping with the low switching frequency issues. First, a hybrid observer was proposed to identify the instantaneous fundamental component of the stator current, which results in an obvious reduction of both the total harmonic distortion (THD) and the low order harmonics. Then, a novel complex current controller was designed to realize the decoupling between $i_m$ and $i_t$. Simulation and experimental results verify the effectiveness of this novel control system for EESM drives.

Robust Control of Permanent Magnet Synchronous Motor using Fuzzy Logic Controller (퍼지논리 제어기를 이용한 영구자석 동기전동기의 강인성 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Chae, So-Hyung;Kim, Chun-Sam;Yoo, Bo-Min
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1228-1230
    • /
    • 1992
  • The permanent magnet synchronous motor(PMSM) is receiving Increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. By vector-controll method, PMSM has the same operating characterics as seperately excited dc motor. The drive system of servo motor is requested to have an accurate response for the reference input and a quick recovery for the disturbance such as load torque. However, when the unknown disturbances and parameter variations are imposed on the permanent magnet synchronous motor(PMSM), the drive system is significantly effected by them. As a result, the drive system with both a fast compensation and a robustness to a parameter variations is requested. This paper investigates the possibility of applying the fuzzy logic controller(FLC) using Multi-Rule Base In a servo motor control system. In this paper, The five Rule Bases(1 to 5) are selected to recover the state error caused by the disturbance in steady state. In the initial operating mode. Rule Base 0 is used. To show the validity of the proposed fuzzy logic controll system, the computer simulation results are provided.

  • PDF

Position Control of Permanent Magnet Synchronous Motor Using Model Following (영구자석 동기전동기의 모델 추종 위치제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Ki-Yong;Lee, I.Y.;Yoon, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.160-163
    • /
    • 1991
  • Permanent Magnet Synchronous Motor(PMSM) has merits in both simple electrical controllability of dc motor and mechanical reliability of ac motor by applying vector control. The vector control method orients the armature current phasor to be perpendicular to the permenant magnet rotor flux in a two-axis coordinate frame, and provides control characteristics that are similar to those of separately excited dc motors. This paper presents a simple model following scheme for position control of PMSM fed by hysteresis current-controlled PWM inverter. The simulation results show the validity of the proposed control method.

  • PDF

Design of PM Excited Transverse Flux Linear Motor of Inner Mover Type

  • Kang Do-Hyun;Ahn Jong-Bo;Kim Ji-Won;Chang Jung-Hwan;Jung Soo-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.137-141
    • /
    • 2005
  • A transverse flux, PM-exited linear motor (TFM-LM) with inner mover was designed and built. Its output power density is higher and its weight is lower than those of the conventional PM exited linear synchronous motors (PM LSM). To obtain the maximum thrust force under the given volume, the thrust force density with respect to the ratio of the slot width and the length of pole pitch is analyzed by the 3-dimension finite element method (FEM). Finally, calculated static thrust forces was compared with the experimental values. The calculated and measured performance of the transverse flux, PM-exited linear motor with inner mover revealed great potential for system improvements by reducing the mass of the linear motor. For examples, when this motor was applied to a ropeless elevator, it was possible to increase the power density by more than 400% over the conventional PM-LSM. The results of this study recommend this type of motor for the ropeless elevator or gearless direct linear driving system.