• Title/Summary/Keyword: Electrical distribution systems

Search Result 1,211, Processing Time 0.024 seconds

A Study on the Control Method of Customer Voltage Variation in Distribution System with PV Systems

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Yong-peel;Kim, Eung-sang;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.838-846
    • /
    • 2015
  • This paper deals with the modified modeling of PV system based on the PSCAD/EMTDC and optimal control method of customer voltages in real distribution system interconnected with the photovoltaic (PV) systems. In order to analyze voltage variation characteristics, the specific modeling of PV system which contains the theory of d-q transformation, current-control algorithm and sinusoidal PWM method is being required. However, the conventional modeling of PV system can only perform the modeling of small-scale active power of less than 60 [kW]. Therefore, this paper presents a modified modeling that can perform the large-scale active power of more than 1 [MW]. And also, this paper proposes the optimal operation method of step voltage regulator (SVR) in order to solve the voltage variation problem when the PV systems are interconnected with the distribution feeders. From the simulation results, it is confirmed that this paper is effective tool for voltage analysis in distribution system with PV systems.

Integrating Operation of Dispersed Generation to Automation Distribution Center for Distribution Network Reconfiguration

  • Park, Joon-Ho;Kim, Jae-Chul;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.102-108
    • /
    • 2002
  • Due to the many attractive aspects of DG in the future power distribution system, distribution automation will be a center hub of integration of the distribution system and resources to satisfy the various needs of customers in a competitive and deregulated environment. In this paper, operation strategies are presented which use network reconfiguration of the automated distribution systems with DG as a real-time operation tool for loss reduction and service restoration from the view of distribution operation. The algorithms and operation strategies of an automated distribution system with DG are introduced to achieve the positive effects of DG in distribution systems. A simple case study shows the effectiveness of the proposed operation strategies.

Development of a Transmission/Distribution Integrated Analysis Hybrid Algorithm for System Operation Platform Including Distributed Generation (분산전원을 포함하는 시스템 운용 플랫폼을 위한 송배전 통합 해석 하이브리드 알고리즘 개발)

  • Song, Chong-Suk;Suh, Jae-Wan;Jang, Moon-Jong;Jang, Gil-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • Owing to the increase in the penetration of distributed generation the DGs connected to the distribution system have an effect on the system conditions of the transmission system and neighboring distribution systems. This makes the separate analysis of the transmission and distribution system no longer valid and requires the consideration of both the system in the analysis process. This paper proposes a transmission/distribution integrated analysis hybrid algorithm that would ensure the accurate analysis of the system by reflecting the results of the transmission and distribution system analysis on each other. Different scenarios are being analysed in order to verify the effectiveness of the hybrid algorithm by observing the effects of the DG connected distribution system on the transmission system and neighboring distribution systems. The algorithm and simulations performed are being conducted by MATLAB and the IEEE 30 bus system and a test distribution system has been utilized for the transmission and distribution systems respectively.

A Lightning Surge Analysis of Testing Line for Protection of Underground Distribution Systems (지중배전계통 보호를 위한 모의시험선로 서지특성 해석)

  • Kim Byoung-Sung;Lee Jang-Geun;Lee Jong-Beom;Han Byong-Sook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.8
    • /
    • pp.313-321
    • /
    • 2006
  • This paper describes the overvoltage obtained by surge behavior analysis in testing underground distribution systems. Model systems consist of overhead distribution line and underground cable. Such model system considered various characteristics of actual distribution systems will be soon constructed at testing yard. Simulation is carried out under various states such as cable kinds, cable length, lightning wave and time, and branch circuits. Model is established by EMTP/ATPDraw. Line Constants are calculated by ATP_LCC. When the direct lightning surge strikes on conductor of overhead line, the overvoltage is calculated using EMTP/ATPDraw in many cases. Simulation results will be compared with real testing results at testing yard in the near future. The compared results will be used to establish protection methods in actual underground distribution systems.

Classifier System and Co-evolutionary Hybrid Approach to Restoration Service of Electric Power Distribution Networks

  • Filipiak, Sylwester
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.288-296
    • /
    • 2012
  • The method proposed by the author is intended for assistance in decision-making (concerning changes of connections) by operators of complex distribution systems during states of malfunction (particularly in the events of malfunctions, for which the consequences encompass extended parts of the network), through designation of connection action scenarios (creating substitute configurations). It is the use by the classifying system working with the co-evolution algorithm that enables the effective creation of substitute scenarios for the Medium Voltage electric power distribution network. The author also completed works concerning the possibility of using cooperation of the evolutionary algorithm and the co-evolutionary algorithm with local search algorithms. The method drawn up may be used in current systems managing the work of distribution networks to assist network operators in taking decisions concerning connection actions in supervised electric power systems.

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

An Investigation into the Impact on Voltage Sag due to Faults in Low Voltage Power Distribution Systems

  • Aggarwal R. K.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Voltage sags are the most widespread quality issues affecting distribution systems. This paper describes in some detail the voltage sag characteristics due to different types and locations of fault in a practical low voltage power distribution system encountered in the UK. The results not only give utility engineers very useful information when identifying parts of the system most likely to pose problems for customer equipments, but also assist the facility personnel to make decisions on purchasing power quality mitigation equipment.

Optimal Configuration of Distribution System considering the Economic Operations of a Microgrid

  • Moon, Hyun-Ho;Lee, Jong-Joo;Choi, Sang-Yule;Shin, Myong-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.20-25
    • /
    • 2010
  • With the diversification of distribution facilities, existing distributed generation can be subdivided into Microgrids, which are smaller units for application. These Microgrids, subdivided as such and connected to distribution systems, should operate under driving plans that will ensure their economic efficiency and, accordingly, the configuration of those distribution systems that include Microgrids should also be changed. The perception of the necessity to secure the economic efficiency of distribution systems is gradually increasing and studies intended to assess the economic efficiency of Microgrids and Smartgrids are ongoing. In this paper, the power generation capacity of an economically operative Microgrid was calculated using the MonteCarlo simulation, which is a method based on the probability theory considering the power generation cost of Microgrids linked with power supply systems and reverse sales costs, etc., and an optimum distribution systems was configured based on the results of these calculation.

Protective Insulation Monitoring Device in IT Earth Systems (IT접지방식의 보호를 위한 활선절연저항 감시기)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.209-213
    • /
    • 2015
  • With the increasing popularity of renewable generation systems and the advancement of power electronics, DC distribution systems have recently received considerable research attention. DC distribution has numerous advantages, including reliability, power quality, and efficiency. Owing to these advantages, DC distribution has been applied to data centers and power quality-sensitive electronic load conditions. Because grounding electrodes in DC are much more susceptible to corrosion than in AC, the IT system defined in IEC Standard 60364 may be a good candidate for an earthing method for DC distribution systems. In addition, IEC Standard 61557 specifies the requirements for insulation monitoring devices (IMD) for protection of the IT system, which continuously monitors the insulation resistances between the power lines and the earth. This paper discusses the development and evaluation of IMD to promote the reliability of distribution systems and increase safety of humans and facilities.

Chaotic Search Algorithm for Network Reconfiguration in Distribution Systems (배전계통 최적구성을 위한 카오스 탐색법 응용)

  • 이상봉;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.325-332
    • /
    • 2003
  • The loss minimization is one of the most important problems to save the operational cost in distribution systems. This paper presents an efficient method for optimal feeder reconfiguration of distribution systems. Chaos search algorithm (CSA) is used to reconfigure distribution systems so that active power losses are globally minimized with turning on/off sectionalizing switches. In optimization problem, the CSA searches the global optimal solution on the basis of regularity in chaotic motions and easily escapes from local or near optimal solution. The CSA is tested on 15 buses and 32 buses distribution systems, and the results indicate that it is able to determine appropriate switching options for global optimum reconfiguration.