• Title/Summary/Keyword: Electrical discharge machining(EDM)

Search Result 134, Processing Time 0.02 seconds

Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location (가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성)

  • 왕덕현;김원일;박성은;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

Improvement of Surface Morphology by Precision Particle Process for Cold Die Steel Alloy (냉간금형용 합금강의 정밀입자가공에 의한 표면정밀도 향상)

  • Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.367-372
    • /
    • 2002
  • Experimental study was conducted for lapping process after WEDMed specimen. In order to decide the lapping depth of the specimen, the number of the grain size was increased from 400, 600 to 800 to obtain the better surface. Observation of scanning electron microscope, hardness test, surface roughness test and energy dispersive spectrum(EDS) analysis were used for this experimental study. From the comparison and analyses of the results of between the wire-cut electrical discharge machining and the lapping, the following results were obtained. The surface roughness after lapping was found to be improved as increasing the number of lapping process like 1st, 2nd, 3rd lapping and the number of grain size such as 400, 600, 800. The surface hardness after increasing the lapping depth of the specimen was slowly increased. It was found that after 3rd lapping process the hardness was reached the hardness of original base material. It was found that the small amount of coating components within 3% was remained after the 1st lapping process, compared to that approximately 16% after WEDM process.

  • PDF

High-accuracy and High-speed Groove Die Set (고정도.고속 Groove Die Set)

  • Kim, Gun-Hoi
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • Currently existing high-accuracy and high-speed die sets used in reciprocal press create scratches at the surface of guide posts, steel balls, and bushes due to vertical movement of balls with point-contacts between inner surface of bushes and guide posts. Consequently, accuracy of the die set and the life span of the metal mold are reduced. However, those scratches could reduce the pre-load of the steel ball. This research designed and developed a groove-type die set which improves life span of the die set by eliminating point-contacts of steel balls with guide posts. The guide post consisted of a steel-ball retainer, a steel-ball retainer stopper, a guide bush, a guide pin, a snap ring, and a spring. The steel-ball retainer has 72 holes with 8 columns of 9 holes in each column. The inner surface of the guide bush was grinded(surface roughness: $Ra\;\\;0.2{\mu}m$, accuracy: $0\;{\sim}\;-0.002mm$) after NC turning and heat treatment. Also, a line of small intermediate pocket was processed inside of the guide bush for lubrication and elimination of foreign materials. Guide grooves of steel balls were processed using a wire EDM(Electrical Discharge Machining) after heat treatment. With such a design of the guide post stated above, loads against steel balls could be dispersed greatly by the line contacts through the guide groove between the guide post and the guide bush, and the life span of the guide post could be expanded semi-permanently.