• Title/Summary/Keyword: Electrical current

Search Result 16,489, Processing Time 0.04 seconds

Operational Characteristics of the FCL Using the Mechanical Contact in the Power System (기계적 접점을 이용한 FCL의 동작 특성)

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.878-882
    • /
    • 2016
  • These days, SFCLs are being developed in order to limit fault current. However, the superconducting elements that limit the fault current have such problems as capacity increase and require auxiliary devices including cooling device. If devices that comprise the current power network can withstand fault current for at least one cycle, it is possible to limit the fault current with current limiting elements by bypassing it on the fault line. In this study, the fault current limiter was configured with current transformer, vacuum interrupter, and current limiting element. Through the experience, it was confirmed that the fault current was limited within one cycle. The superconducting element, as a current limiting element, limited the fault current by 80 % within one cycle from fault occurrence, and the passive element limited it more than 95 %. Also, through the comparison between resistance curve and power consumption curve, it was confirmed that the current limiting element using a passive element was more stable than the superconducting element that required capacity increase and other auxiliary devices. It was considered that the FCL proposed in this study could limit fault current stably within one cycle from fault occurrence by using the existing power technologies such as fault current detection and solenoid valve operating circuit.

High Temperature Characteristics of submicron GaAs MESFETs (고온 동작 MESFET 의 온도특성 해석)

  • 원창섭;유영한;신훈범;한득영;안형근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.379-382
    • /
    • 2002
  • GaAs has wide band gap, Therefore that malarial can used high Temperature application. in this paper explain to current-voltage characteristics of thermal effect. we experiment on thermal test of current-voltage characteristics and gate leakage current with real device. As a result, we propose a current-volatage characteristics model. that model base on gate leakage current, and gate leakage current influence gate source voltage.

  • PDF

High-frequency Current Distribution Control (고주파 전류의 수평적 경로 유도)

  • Lim, Han-Sang;Park, Jae-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.807-814
    • /
    • 1999
  • In this paper, it is shown that high frequency current can be controlled to concentrate near the desired path in a conducting plate. A conducting plate is modelled to examine current distribution. And current distribution is analyzed in view of the frequency and geometric characteristics of current path. The high frequency current behavior from the analysis is compared with the experiments. The results, obtained by the experiments of test specimens, are in good agreement with the analytical results.

  • PDF

A Study on current sensor (전류 검출기에 대한 연구)

  • Lee, Hwan
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.335-340
    • /
    • 1996
  • The item and structure of current detector depends on the current in conductors. The Hall current detector of these detectors is to use the variation of Hall voltage to conductor's current and it is very difficult for the conventional type to detect small current. In this paper we study experimented-method that detect AC current by using the magnetic modulation method the current, 0[mA]~100[mA]. The experiments results in 5 percent against the conventional, 20 percent in linear error, 0.12[.DELTA.mV/.DELTA.mA] to conventional type, 50[.DELTA.mV/.DELTA.mA] in sensitivity. (author). 7 refs., 15 figs.

  • PDF

High Performance PI Current Controller for a Switched Reluctance Motor

  • Ashoornejad, A.;Rashidi, A.;Saghaeian-nejad, S.M.;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.367-373
    • /
    • 2014
  • The most common current controller for the Switched Reluctance Motor (SRM) is the hysteresis controller. This method, however, suffers from such drawbacks as variable switching frequency, consequent audible noise and high current ripple. These disadvantages make this controlling method undesirable for many applications. The alternative solution is the PI controller. Since the fixed gain PI current controller can only be optimized for one operating point, and on the other hand, SR motor is highly nonlinear, PI controller gain should be adjusted according to incremental inductance. This paper presents a novel method for PI current controller gain adaptation which is simple and yields a good performance. The proposed controller has been implemented on a test bench using a eZdsp F28335 board. The performance of the current controller has been investigated in both simulation and experimental tests using a four-phase 8/6 4KW SRM drive system.

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.

Fault Current Limiting Characteristics of Flux-lock Type SFCL with Several Secondary Windings

  • Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.193-197
    • /
    • 2005
  • We investigated fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL), which consisted of a primary winding and several secondary windings connected in series between $high-T_C$ superconducting (HTSC) thin films. Each YBCO thin film has a 2 mm wide and 42 cm long meander line with 14 stripes of different length. The power imbalance due to the slight difference of Ie between YBCO current limiting elements causes the significant power burden on YBCO element with lower $I_C$. We confirmed from our experiments that the mutual coupling between the primary winding and secondary windings of the flux-lock type SFCL reduced the power imbalance between YBCO current limiting elements compared with the resistive type SFCL connected in series.

Comparison Analysis of Resonant Controllers for Current Regulation of Selective Active Power Filter with Mixed Current Reference

  • Yi, Hao;Zhuo, Fang;Li, Yu;Zhang, Yanjun;Zhan, Wenda
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.861-876
    • /
    • 2013
  • Instead of extracting every selected harmonic component, the current reference of selective active power filter (APF) can be also obtained by filtering out the fundamental component from distorted load current for computation efficiency. This type of mixed current reference contains kinds of harmonic components and easily involves noises. In this condition, selective harmonic compensation must be realized by the current controller. With regard that selectivity is the most significant feature of controller, this paper presents specific comparison analysis between two types of resonant controllers: proportional-resonant (PR) controller and vector-resonant (VR) controller. The comparison analysis covers the relations, performances, and stability of both controllers. Analysis results conclude that the poorer selectivity of the PR controller could be relatively improved, but limitations from system stability make the improvement hardly realized. By contrast, the VR controller exhibits excellent selectivity and is more suitable for selective APF with mixed current reference. Experimental results from laboratory prototype validate the reasonability of analysis. And the features of each resonant controller are concluded.

Evaluation of Electrical and Leakage Current Characteristics of Polymer Arrester(42kV 10kA Class3) for Railroad Line (전차선로용 폴리머 피뢰기(42kV 10kA Class3)의 전기적 특성 및 누설전류 특성 평가)

  • Kim, Seok-Sou;Choi, Ike-Sun;Park, Choon-Hyun;Cho, I-Gon;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1171-1174
    • /
    • 2004
  • Leakage current of the polymer arrester(42kV, 10kA, Class3) for railroad line applied actually field was observed and electrical characteristics of arrester before and after applied actually field were investigated. During applied actually field, leakage current of arresters were $610{\sim}647{\mu}A$ in AN SAN line and $500{\mu}A$ in YUNG DONG line. After applied actually field, electrical characteristics of arrester, such as insulation test, reference voltage test, leakage current test and partial discharge current test, wasn't variation as before applied actually field.

  • PDF

Parameters Optimization of Impulse Generator Circuit for Generating First Short Stroke Lightning Current Waveform

  • Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.286-292
    • /
    • 2014
  • This paper presents the parameters optimization technology for generating the first short stroke lightning current waveform($10/350{\mu}s$) which is necessary for the performance tests of components of lightning protection systems, as required under IEC 62305 and the newly amended IEC 62561. The circuit using the crowbar device specified in IEC 62305 was applied to generate the lightning current waveform. To find the proper parameters of the circuit is not easy because the circuit consists of two parts; circuit I, which relates to the front of current waveform, and circuit II, which relates to the tail. A simulation in PSpise was carried out to find main factors related to the front and tail of $10/350{\mu}s$. The lightning current generator was developed by utilizing the circuit parameters found in the simulation. In the result of experiments, new parameters of the circuits need to be changed because of the difference between the simulation and the experiment results. Using the iterative method, the optimized parameters of the circuits was determined. Also a multistage-type external coil and a damping resistor were proposed to make the efficiency of generation to enhance. According to the result in this paper, an optimized first short stroke lightning current waveform was obtained.