• Title/Summary/Keyword: Electrical conduction characteristics

Search Result 421, Processing Time 0.027 seconds

Space Charge and Conduction Characteristics of Vinylpyridine Grafted Polyethylene (바이닐피리딘 그라프트 폴리에틸렌의 공간전하 및 전기전도 특성)

  • 오우정;서광석;김종은
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.219-222
    • /
    • 1998
  • The space charge and conduction characteristics of chemically modified vinylpyridine (VP) grafted low density polyethylene (LDPE) was investigated. VP grafted LDPE was analyzed by elemental analysis (EA) to confirm the grafting reaction. Homocharge was developed in VP grafted LDPE at low graft ratios and changed to heterocharge with increasing the content of VP. In conduction experiment, current densities of VP grafted LDPE were lower than that of LDPE and VP grafted LDPEs showed almost the same conduction characteristics as vinylpyridine graft ratio increased

  • PDF

Characteristics of Electrical Conduction in LB Ultra Thin Films (LB 초박막의 전기전도특성(I))

  • 이원재;최명규;권영수;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.74-77
    • /
    • 1990
  • In this paper, we study the electrical conduction mechanism in Langmuir-Boldgett(LB) ultra thin films. The LB device has a metal/Lb films/metal sandwich structure, where metal is electrode. In our experiments, the temperature does not depend on the current at below 0$^{\circ}C$. This phenomena show that the electrical conduction current is a tunnel current inherent to LB ultra thin films.

Electrical Characteristics on the Interface between XLPE/EPDM (XLPE/EPOM 계면의 전기적 특성)

  • 한성구;조정형;이창종;김종석;서광석;박대희;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.235-238
    • /
    • 1996
  • In this paper, We intended to evaluate the characteristics of XLPE/EPDM interface which exists in the cable joint. The fault was mainly occurred in this interface. Thus we looked into the electrical characteristics through the conduction current and the breakdown test. Through from the experiment, we obtained the result that the conduction current in this interface flowed less than other dielectric materials, that the breakdown strength was higher and that the pressure dependance ㅐf the breakdown strength was higher.

  • PDF

A Study on Conduction Characteristics of Oriented Polypropylene Film (이축 연신 풀리프로필렌 필름의 전도특성에 관한 연구)

  • 김귀열;윤문수;이준욱
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.175-182
    • /
    • 1990
  • In order to investigate the conduction characteistics of the biaxially oriented polypropylene film, several measurements have been carried out in the range of temperature between 5['c] and 25['c] as well as the field intensity between 10[MV/m] and 300[MV/m]. The whole range of the characteristics observed at 15['c] appears to be divided into five regions` the Ohmic conduction region due to ionic carrier below 40[MV/m], the region from 40[MV/m] to 70[MV/m] in which the conduction mechanism is attributed to Poole-Frenkel effect, the region from 70[MV/m] to 82[MV/m] in which the negative resistance characteristics are observed, then the region from 82[MV/m] which is dominated by Schottky effect and finally, the region from 240[MV/m] up to the point where dielectric breakdown occurs in which the mechanism is based on Flowler-Nordheim theory.

  • PDF

The electrical conduction characteristics of polymide thin films fabricated by vapor deposition polymerization(VDP) method based on PMDA and 4,4'-DDE monomer (진공증착중합법을 이용하여 PMDA와 4,4'-DDE 단량체로 제조한 polyimide박막의 전기전도 특성)

  • 김형권;이덕출
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.776-782
    • /
    • 1996
  • The electrical properties of vapor deposition polymerized polymide thin films for getting an in-line system with manufacturing process of semiconductor device, have been studied. Polyimide thin films fabricated by vapor deposition polymerization(VDP) method based on PMDA and 4,4'-DDE monomer were confirmed by FT-IR spectra. It is found that the major conduction carriers of thin films are ions, and the hopping length of ions is almost same with monomer length at the temperature over 120.deg. C through the analysis of electrical conduction mechanism. Also, The activation energy is about 0.69 eV at the temperature of >$30^{\circ}C$ - >$150^{\circ}C$ and it is shown that the resistivity at which thin films can be used as an insulating film between layers of semiconductor device, is 3.2*10$^{15}$ .ohm.cm.

  • PDF

Charge Distribution and Electrical Conduction Characteristics As a Function of Extraction Temperature (용매추출에 따른 저밀도 폴리에틸렌의 전하분포와 전기전도 특성)

  • Lee, Kyung-W.;Lee, Mi-Kyung;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.395-397
    • /
    • 1995
  • To investigate the effects of solvent extraction on electrical properties of LDPE, charge distribution, electrical conduction, and FT-IR experiments are carried out for three kinds of LDPE which are same for melt index (MI) and density. The effects of short chains for the charge distribution are quite different. For the electrical conduction, the electrical conduction mechanism remains unchanged, as the solvent extraction temperature is increased.

  • PDF

Electrical Conduction Characteristics of XLPE Film evaporated Different Metal Electrode (이종금속전극이 증착된 XLPE필름의 전기전도 특성)

  • Lee, Heung-Gyu;Lee, Un-Yeong;Im, Gi-Jo;Kim, Yong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.557-562
    • /
    • 1999
  • Electrical conduction characteristics of XLPE film evaporated with different metal electrode are discussed. The relation between electrical current(I) and Voltage(V) in the M(metal)-I(XLPE)-M(metal) structure are measured in the temperature range from 25$[^{\circ}C]$ to 90[$[^{\circ}C]$ . Several kinds of metals are used as electrode, such as, Al, Ag and Cu.From the experimental results, it is conclused that the conduction mechanism at highelectric field is SCLC. The dependences of temperature and kinds of metal on the trap filled electric field level can be well explained by this theory.

  • PDF

Study on the Electrical Conduction Mechanism of Organic Light-Emitting Diodes (OLEDs) (유기발광소자(OLED)의 전기전도메커니즘에 대한 고찰)

  • Lee, Won Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.6-10
    • /
    • 2018
  • Organic light emitting devices have attracted the attention of many people because of their high potential for self-emission and flexible display devices. However, due to limitations in device efficiency and lifetime, partial commercialization is underway. In this paper, we have investigated the electrical conduction mechanism of the organic light emitting device by the temperature and the thickness of the light emitting layer through the current - voltage characteristics with respect to the conduction mechanism directly affecting the efficiency and lifetime of the organic light emitting device. Through the study, it was found that the conduction in the low electric field region is caused by the movement of the heat excited charge in the ohmic region and the tunneling of the electric charge due to the high electric field in the high electric field region.

A Study on the Electrical and Mechanical Properties of Conduction Cooling HTS SMES

  • Choi, Jae-Hyeong;Choi, Jin-Wook;Shin, H.S.;Kim, H.J.;Seong, K.C.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.29-32
    • /
    • 2009
  • The conduction cooling HTS SMES magnet is operated in cryogenic temperature. The insulation design at cryogenic temperature is an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in air or vacuum are virtually unknown. Therefore, we need active research and development of insulation concerning application of the conduction cooling HTS SMES. Specially, this paper was studied about high vacuum and cryogenic temperature breakdown and flashover discharge characteristics between cryocooler and magnet-coil. The breakdown and surface flashover discharge characteristics were experimented at cryogenic temperature and vacuum. Also, we were experimented about mechanical properties of 4-point bending test. From the results, we confirmed that about research between cryocooler and magnet-coil established basic data in the insulation design.

Electrical Conduction Mechanism in the Insulating TaNx Film (절연성 TaNx 박막의 전기전도 기구)

  • Ryu, Sungyeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.32-38
    • /
    • 2017
  • Insulating $TaN_x$ films were grown by plasma enhanced atomic layer deposition using butylimido tris dimethylamido tantalum and $N_2+H_2$ mixed gas as metalorganic source and reactance gas, respectively. Crossbar devices having a $Pt/TaN_x/Pt$ stack were fabricated and their electrical properties were examined. The crossbar devices exhibited temperature-dependent nonlinear I (current) - V (voltage) characteristics in the temperature range of 90-300 K. Various electrical conduction mechanisms were adopted to understand the governing electrical conduction mechanism in the device. Among them, the PooleFrenkel emission model, which uses a bulk-limited conduction mechanism, may successfully fit with the I - V characteristics of the devices with 5- and 18-nm-thick $TaN_x$ films. Values of ~0.4 eV of trap energy and ~20 of dielectric constant were extracted from the fitting. These results can be well explained by the amorphous micro-structure and point defects, such as oxygen substitution ($O_N$) and interstitial nitrogen ($N_i$) in the $TaN_x$ films, which were revealed by transmission electron microscopy and UV-Visible spectroscopy. The nonlinear conduction characteristics of $TaN_x$ film can make this film useful as a selector device for a crossbar array of a resistive switching random access memory or a synaptic device.