• Title/Summary/Keyword: Electrical charge

Search Result 2,500, Processing Time 0.029 seconds

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.

Highly Stable Graphene Field-effect Transistors using Inverse Transfer Method (역전사법을 활용한 고안정성 그래핀 기반 전계효과 트랜지스터 제작)

  • Lee, Eunho;Bang, Daesuk
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.153-157
    • /
    • 2021
  • Graphene, a two-dimensional carbon allotrope, has outstanding mechanical and electrical properties. In particular, the charge carrier mobility of graphene is known to be about 100 times higher than that of silicon, and it has received attention as a core material for next-generation electronic devices. However, graphene is very sensitive to environmental conditions, especially vulnerable to moisture or oxygen. It becomes a disadvantage in that the stability of the graphene-based electronic device, so various attempts are being made to solve this problem. In this work, we report a method to greatly improve the stability by controlling the surface energy of the polymer layer used for transferring the insulating layer of the graphene field-effect transistor. As the surface energy of the polymer used as the insulating layer was lowered, the stability could be improved by effectively controlling the adsorption of impurities in the atmosphere such as water molecules or oxygen.

A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation (태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구)

  • Choi, Hoi-Kyun
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.

Identification of Toxic Chemicals Using Polypyrrole-Cyclodextrin Hybrids (폴리피롤-사이클로덱스트린 혼성체를 이용한 유해화합물질의 검출)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.186-189
    • /
    • 2019
  • Polypyrrole is a typical electrical conducting polymer, which has an excellent charge transport property. Cyclodextrins are a group of toxic-free and cyclic oligosaccharide molecules, capable of capturing low molecular weight chemicals. Considering these advantages, hybrid materials of polypyrrole and cyclodextrin can be used to detect hazardous compounds. Cyclodextrin molecules can accommodate toxic chemicals by the formation of host-guest complexes and generate electric signals, which are effectively delivered by polypyrrole backbone. In this study, the polypyrrole/cyclodextrin hybrid material was prepared using a facile wet method and included into a hydrogel. Subsequently, it was applied to a simple sensor system with a gold-patterned electrode for the detection of potentially hazardous material, methyl paraben. Compared with pristine polypyrrole, it was found that the polypyrrole/cyclodextrin hybrid showed an improved performance. This study can be an example of using environmentally benign conducting polymer/cyclodextrin hybrids as sensing media.

Electrochemical Performance of Micro Sized Silicon/CNT/Carbon Composite as Anode Material for Lithium Ion Batteries (리튬이차전지용 음극활물질로서 Micro sized Silicon/CNT/Carbon 복합입자의 전기화학적 특성)

  • Shin, Min-Seon;Lee, Tae-Min;Lee, Sung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.112-121
    • /
    • 2019
  • In this study, silicon / carbon nanotube / carbon composite particles with high capacity were fabricated by using micro-sized silicon particles and carbon nanotubes as an anode material for lithium ion batteries. The silicon / carbon nanotube / carbon composite particles were prepared by spray drying method to prepare spherical composite particles. The composite particles have the network structure of the carbon nanotubes around the silicon particles, in which the silicon particles and the carbon nanotubes are bonded by amorphous carbon. It appears that the volume expansion of silicon is effectively buffered and the electrical contact is maintained in the network structure of the composite particles during charge-discharge cycles.

The Effectiveness Validation of Psychosocial Risk Management Plans in an Organizational Working Environment Using Logistic Regression Analysis (로지스틱 회귀분석을 이용한 조직 근로환경에서의 심리사회적 위험관리 방안의 효과 검증)

  • Kim, Soo-Yun;Han, Seung-Jo;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.78-84
    • /
    • 2021
  • In addition to physical risks such as electrical, chemical, and mechanic ones in the workplace, psychosocial risks are also raising as an important issue in recent years in connection with human rights and work-life balance policies. The purpose of this study is to confirm the degree of effect of the psychosocial risk management plan at the workplace on workers through logistic regression analysis. Input data for logistic regression analysis is the results of a survey of 4,558 people conducted by the Institute for Occupational Safety and Health were used. There are 9 independent variables, including the change a workplace and confidential counseling, and the dependent variable is whether the worker feels the effect on the psychosocial risk management plan. As a result of this study, changes in work organization, dispute resolution procedures, provision of education program, notification of the impact of psychosocial risks on safety and health, and the persons in charge of solving psychosocial problems are shown effective in reducing worker's psychosocial risks. This study drives which of the management plans implemented to reduce the psychosocial risk of workers in the workplace are effective, so it can contribute to the development of psychosocial risk management plans in the future.

Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode (전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용)

  • Wang, Xue;Shi, Ke;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.62-69
    • /
    • 2022
  • Graphene has a large surface area to volume ratio and good mechanical and electrical property and biocompatibility. This study described the electrochemical deposition and reduction of graphene oxide on the surface of indium tin oxide (ITO) glass slide and electrochemical characterization of graphen-modified ITO. Cyclic voltammetry was used for the deposition and reduction of graphene oxide. The surface of graphen-coated ITO was characterized using scanning electron microscopy and energy dispesive X-ray spectroscopy. The electrodes were evaluated by performing cyclic voltammetry and electrochemical impedance spectroscopy. The number of cycles and scan rate greatly influenced on the coverage and the degree of reduction of graphene oxide, thus affecting the electrochemical properties of electrodes. Modification of ITO with graphene generated higher current with lower charge transfer resistance at the electrode-electrolyte interface. Glucose oxidase was immobilized on the graphene-modified ITO and has been found to successfully generate electrons by oxidizing glucose.

Compatibility of Lithium ion Phosphate Battery in Solar off Grid Application

  • Lakshmanan, Sathishkumar;Vetrivel, Dhanapal;Subban, Ravi;R., Saratha;Nanjan, Sugumaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.472-478
    • /
    • 2022
  • Solar energy harvesting is practiced by various nations for the purpose of energy security and environment preservation in order to reduce overdependence on oil. Converting solar energy into electrical energy through Photovoltaic (PV) module can take place either in on-grid or off-grid applications. In recent time Lithium battery is exhibiting its presence in on-grid applications but its role in off-grid application is rarely discussed in the literature. The preliminary capacity and Peukert's study indicated that the battery quality is good and can be subjected for life cycle test. The capacity of the battery was 10.82 Ah at 1 A discharge current and the slope of 1.0117 in the Peukert's study indicated the reaction is very fast and independent on rate of discharge. In this study Lithium Iron Phosphate battery (LFP) after initial characterization was subjected to life cycle test which is specific to solar off-grid application as defined in IEC standard. The battery has delivered just 6 endurance units at room temperature before its capacity reached 75% of rated value. The low life of LFP battery in off-grid application is discussed based on State of Charge (SOC) operating window. The battery was operated both in high and low SOC's in off-grid application and both are detrimental to life of lithium battery. High SOC operation resulted in cell-to-cell variation and low SOC operation resulted in lithium plating on negative electrode. It is suggested that to make it more suitable for off-grid applications the battery by default has to be overdesigned by nearly 40% of its rated capacity.

A Study on Rotor Shape Design to Reduce Torque Ripple and Core Loss of IPMSM for SEV (SEV용 IPMSM의 토크리플 및 철손 저감을 위한 회전자 형상 설계에 관한 연구)

  • Jeong-In Kang;Tae-Uk Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.327-332
    • /
    • 2023
  • As interest in eco-friendly and fuel-efficient electric vehicles has increased globally, there has also been a growing interest in the efficiency, vibration, and noise of motors for electric vehicles Electric vehicles generally have significantly lower driving ranges per charge compared to the maximum driving range per fueling of internal combustion engine vehicles. Additionally, there are issues with various vibrations and noise generated by the motor that can cause discomfort for passengers. Therefore, research is necessary to reduce losses, vibration, and noise of the motor to improve the driving range of electric vehicles. IPMSM with a purchased design can obtain additional reluctance torque by utilizing the difference in inductance between the d and q axes. However, due to this reluctance torque, torque ripple occurs larger than other motors. The increase in torque ripple also increases noise and vibration. Since the reluctance torque, which is the main cause of torque ripple, is determined by the shape of the motor components, torque ripple can be reduced through shape optimization. In this paper, a rotor shape for reducing torque ripple and core loss that causes vibration, noise, and efficiency to decrease of IPMSM for electric vehicles was proposed. Optimization design was carried out by changing the shape of the q-axis path of the rotor to reduce the difference in inductance of the d and q-axis of the rotor. Finally, in order to verify the validity of the design variables derived through the optimal design, the original model and the improved model were compared through the FEM. Compared to the original model, the improved model's torque verifying ripple was reduced by about 62% and core loss was reduced by about 29%, the superiority of the improved model.