• Title/Summary/Keyword: Electrical Propulsion System

Search Result 275, Processing Time 0.03 seconds

Lithium-ion Battery Energy Storage System for Power Quality Improvement in Electrical Propulsion Ships (전기추진선박의 전력품질 개선을 위한 리튬-이온 배터리 에너지저장시스템 적용)

  • Ku, Hyun-Keun;Seo, Hye-Rim;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.351-355
    • /
    • 2015
  • This paper explained the application of a lithium-ion battery energy storage system to electric propulsion ships. The power distribution in electric propulsion ships has low power quality because of the variation in the power consumption of the propulsion motor. For proper operation of the ship, the power quality needs to be improved, and the battery energy storage system is used to solve power-quality problems. The simulation models of electric propulsion ship and battery energy storage systems are constructed on MATLAB/Simulink to verify the improvement in power quality. The proposed system is applied in various scenarios of the propulsion motor state. The power quality achieved by using the battery energy storage system in both voltage and frequency satisfies the standards set by IEC-60092/101.

Prediction and Analysis of the Energy Consumption Considering the Electric Railway Vehicle's Driving (전기철도차량의 주행 중 에너지 소비 특성 예측 및 분석 연구)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.777-781
    • /
    • 2012
  • In this paper, an electrical power simulation program was developed to predict the energy consumption of the electrical railway propulsion system, which considered the actual operating conditions of the electric railway vehicles. The developed program was designed to predictable the energy consumption during a virtual driving in the actual route of the virtual railway vehicles equipped with a propulsion system consisting of power conversion equipments and traction motors. In addition, the accuracy verification of the electrical power simulation program for a propulsion system was performed by using a real power consumption data, which was measured during the driving of the railway vehicles in the Gyeongui Line. In conclusion, the electrical power simulation program for a propulsion system was validated throughout a comparative investigation between the simulated values and the experimental values and the energy consumption characteristics of electric railway vehicles on the existing route or the new route will be possible to predict throughout the virtual simulation considering the driving conditions of the electric railway vehicles.

Design and Analysis of Load Shedding for the Electric Propulsion System (전기추진시스템의 부하저감 설계 및 해석)

  • Kim, Kyung-Hwa;Kim, Dae-Heon;Lee, Seok-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.971-977
    • /
    • 2015
  • The electric propulsion system requires more reliability and safety than the conventional propulsion system because any sudden changes of electric system would bring tremendous effects on the ship's safety and propulsion. So it is very important to consider the potential transient effects. This paper discusses one of the worst electric accident. That is, one or two of generators are out of service in normal seagoing condition. And the appropriate measures are simulated in order to prevent the frequency decline that can bring the other generator's tripping. In addition, the relation between the transient effects and the major factors(inertia of generator/motors, governor's drooping characteristic and response speed) are also identified using the ETAP software.

Research on application possibility of superconductivity motor for war ship Propulsion system (초전도모터 추진시스템 함정에 적용가능성 연구)

  • Kim, Jong-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.40-43
    • /
    • 2003
  • An electric propulsion system integrated with the ship service distribution system offers the naval architect considerable flexibility, and often the choice of a more affordable ship to acquire and operate as compared to a segregated mechanical drive option. United States of America navy announced in 2000 that they selected the electric propulsion system on next generation warship. Specially there is excellent advantages in superconductivity motors which can have higher efficiency, less vibration and noise, smaller dimensions compared with the conventional motors. The 5 MW HTS motor for warship test of electric propulsion was developed and tested. Also it was contracted between AMSC and United States of America navy to develop a 36.5 MW HTS motor in 3 years since March 3, 2003. This paper deals with the technical development tendency of HTS motors in foreign countries as well as in domestic, and it is focused on the application of HIS motors to the electrical propulsion system.

  • PDF

A Study on the Improving Effectiveness of Shipboard Electric Propulsion System with Ultra-capacitor Energy Storage Devices (울트라 캐패시터 에너지 저장장치를 적용한 함정 전기추진 시스템의 효용성 증대 연구)

  • Kim, So-Yeon;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • Recently, integrated electric propulsion system has been vigorously adopted into naval vessels. To enhance effectiveness and efficiency of power management in these propulsion systems, this paper investigates necessity of energy storage devices and their operation strategies. By introducing the energy storage devices, engine can operate at higher efficiency point and accordingly costs for fuel and maintenance are significantly reduced. In addition, transient performance can also be improved with support of the devices and it leads to stable operation of shipboard power bus. To validate the proposal of this paper, computer simulation has been conducted with real load data of existing electric propulsion system.

Performance Analysis of the Linear Induction Motor for the Deep-Underground High-Speed GTX

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.200-206
    • /
    • 2012
  • In order to develop a deep-underground great train express (GTX) in South Korea, the specifications decision and development of a traction control system (including an inverter and a traction motor), which considers a variety of route conditions, must be advanced. In this study, we examined the running resistance properties of a high-speed traction system based on a variety of tunnel types and vehicle organization methods. Then, we studied the power requirements necessary for the traction motor to maintain balanced speed in the high-speed traction system. From this, we determined the design criteria for the development of a high-speed traction system for use in the deep-underground GTX. Finally, we designed a linear induction motor (LIM) for a propulsion system, and we used the finite element method (FEM) to analyze its performance as it travelled through deep-underground tunnels.

A Study on the Adoption of Power Take Off Operation Mode and Fuel-Saving Effect in the Hybrid Electric Propulsion System for a Warship (전투함 하이브리드 전기추진 시스템의 PTO 운전모드 적용 및 연료절감 효과 연구)

  • Kim, So-Yeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.40-48
    • /
    • 2019
  • Hybrid electric propulsion systems (H-EPSs) are an intermediate step for integrated full electric propulsion warships. H-EPSs are a dynamic combination of mechanical and electrical propulsion systems to achieve the required mission performances. The system modes could adapt to meet the requirement of the various operation conditions of a warship. This paper presents a configuration and operating modes of H-EPSs considering the operation conditions of a destroyer class warship. The system has three propulsion modes, namely, motoring mode, generating mode [power take off (PTO) mode], and mechanical mode. The PTO mode requires a careful fuel efficiency analysis because the fuel consumption rate of propulsion engines may be low compared with the generator's engines depending on the loading power. Therefore, the calculation of fuel consumption according to the operating modes is performed in this study. Although the economics of the PTO mode depends on system cases, it has an advantage in that it ensures the reliability of electric power in case of blackout or minimum generator operation.

AC/DC Converter Design of The Korean Type Multi-Propulsion System (한국형 다중추진시스템의 주전력변환기 설계)

  • Jho Jeong-Min;Jung Byung-Su;Cho Heung-Jae;Kim Su-Yong;Sung Ho-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.127-133
    • /
    • 2005
  • Korean multi-propulsion system consists of a synchronous alternator driven by a gas turbine driving synchronous alternator coupled to a rectifier - DC link - DC/DC converter and traction system based on modification of the G7 high-speed train. The simulation modules include turbine engine system, alternator, rectifier, DC/DC converter and power management module. Simulation for the multi-propulsion system such as a modular is presented in order to confirm the system stability for loads with uncertain input impedances and control loop speeds. This paper deals with various simulation modules with a specific control loop to help the development of the real lame-scaled system.

Development of Propulsion Subsystem for KOMPSAST (다목적 실용위성의 추진시스템 개발)

  • 최진철;윤효철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.80-89
    • /
    • 1998
  • Propulsion subsystem transfers KOMPSAT into mission orbit and controls its attitude. Design factor consists of structure safety, electrical circuit design, consumable power estimation of thermal hardwares, damping device design of fuel transient pressure, and system configuration design by considering plume effect from thruster firing. System level analysis should be performed for verification of system design under launch vehicle and orbital environment. Electrical functional test of thermal control hardware, proof pressure test, cleanliness verification test, and internal/external leakage test of fuel feeding system should be carried out for performance estimation of propulsion system. Design and assembly process of propulsion subsystem was depicted and reliability of system was verified by test analysis in this paper.

  • PDF