• 제목/요약/키워드: Electrical Properties of graphene

검색결과 226건 처리시간 0.038초

리튬 폴리머전지용 Graphene Composite의 전기화학적 특성 (Electrochemical Properties of Graphene Composite for Lithium Polymer Battery)

  • 김종욱;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.359-362
    • /
    • 2000
  • The purpose of this study is to research and develop graphene composite for lithium polymer battery. VO(graphene) composite is one of the promising material as a electrode active material for lithium polymer battery(LPB). We investigated AC impedance response and charge/discharge cycling of VO(graphene)/SPE/Li cells. The first discharge capacity of VO(graphene) cathode with 50wt.% V$_2$O$\sub$5/ was 150mAh/g, while that of VO(graphene) cathode with 85wt.% V$_2$O$\sub$5/ was 248mAh/g. The Ah efficiency was above 98% after the 2nd cycle. The discharge capacity of VO(graphene) anode with 3wt.% V$_2$O$\sub$5/ was 718 and 266mAh/g at cycle 1 and 10 at room temperature, respectively. The VO(graphene) anode with 3wt.% V$_2$O$\sub$5/ in PVDF-PAN-PC-EC-LiC1O$_4$ electrolyte showed good capacity with cycling.

  • PDF

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • 구자훈;이태윤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites

  • Kim, Minjae;Kim, Yeongseon;Baeck, Sung Hyeon;Shim, Sang Eun
    • Carbon letters
    • /
    • 제16권1호
    • /
    • pp.34-40
    • /
    • 2015
  • In this study, in order to improve the thermal and electrical properties of epoxy/graphene nanoplatelets (GNPs), surface modifications of GNPs are conducted using silane coupling agents. Three silane coupling agents, i.e. 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane (ETMOS), 3-glycidoxypropyltriethoxysilane (GPTS), and 3-glycidoxypropyltrimethoxysilane (GPTMS), were used. Among theses, GPTMS exhibits the best modification performance for fabricating GNP-incorporated epoxy composites. The effect of the silanization is evaluated using transmission electron microscopy (TEM), scanning electron microscopy, thermogravimetric analysis, and energy dispersive X-ray spectroscopy. The electrical and thermal conductivities are characterized. The epoxy/silanized GNPs exhibits higher thermal and electrical properties than the epoxy/raw GNPs due to the improved dispersion state of the GNPs in the epoxy matrix. The TEM microphotographs and Turbiscan data demonstrate that the silane molecules grafted onto the GNP surface improve the GNP dispersion in the epoxy.

Long-term Air Stability of Small Molecules passivated-Graphene Field Effect Transistors

  • Shin, Dong Heon;Kim, Yoon Jeong;Kim, Sang Jin;Moon, Byung Joon;Oh, Yelin;Ahn, Seokhoon;Bae, Sukang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.237.1-237.1
    • /
    • 2016
  • Electrical properties of graphene-based field effect transistors (G-FETs) can be degraded in ambient conditions owing to physisorbed oxygen or water molecules on the graphene surface. Passivation technique is one of a fascinating strategy for fabrication of G-FETs, which allows to sustain electrical properties of graphene in the long term without disrupting its inherent properties: transparency, flexibility and thinness. Ironically, despite its importance in producing high performance graphene devices, this method has been much less studied compared to patterning or device fabrication processes. Here we report a novel surface passivation method by using atomically thin self-assembled alkane layers such as C18- NH2, C18-Br and C36 to prevent unintentional doping effects that can suppress the degradation of electrical properties. In each passivated device, we observe a shift in charge neutral point to near zero gate voltage and it maintains the device performance for 1 year. In addition, the fabricated PG-FETs on a plastic substrate with ion-gel gate dielectrics exhibit not only mechanical flexibility but also long-term stability in ambient conditions. Therefore, we believe that these highly transparent and ultra-thin passivation layers can become a promising candidate in a wide range of graphene based electronic applications.

  • PDF

Visible-light photo-reduction of reduced graphene oxide by lanthanoid ion

  • Kim, Jinok;Yoo, Gwangwe;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.290.1-290.1
    • /
    • 2016
  • Grapehen, a single atomic layer of graphite, has been in the spotlight and researched in vaious fields, because its fine mechanical, electrical properties, flexibility and transparence. Synthesis methods for large-area graphene such as chemical vaper deposition (CVD) and mechanical, chemical exfoliation have been reported. In particular, chemical exfoliation method receive attention due to low cost process. Chemical exfoliation method require reduction of graphene oxide in the process of exfoliation such as chemical reduction by strong reductant, thermal reduction on high temperature, and optical reduction via ultraviolet light exposure. Among these reduction methods, optical reduction is free from damage by strong reductant and high temperature. However, optical reduction is economically infeasible because the high cost of short-wavelength ultraviolet light sorce. In this paper, we make graphene-oxide and lanthanoid ion mixture aqueous solution which has highly optical absorbency in selective wevelength region. Sequentially, we synthesize reduced graphene oxide (RGO) using the solution and visible laser beam. Concretely, graphene oxide is made by modified hummer's method and mix with 1 ml each ultraviolet ray absorbent Gd3+ ion, Green laser absorbent Tb3+ ion, Red laser absorbent Eu3+ ion. After that, we revivify graphene oxide by laser exposure of 300 ~ 800 nm layser 1mW/cm2 +. We demonstrate reproducibility and repeatability of RGO through FT-IR, UV-VIS, Low temperature PL, SEM, XPS and electrical measurement.

  • PDF

Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures

  • Wong, K.L.;Chuan, M.W.;Chong, W.K.;Alias, N.E.;Hamzah, A.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.209-221
    • /
    • 2019
  • Graphene, with impressive electronic properties, have high potential in the microelectronic field. However, graphene itself is a zero bandgap material which is not suitable for digital logic gates and its application. Thus, much focus is on graphene nanoribbons (GNRs) that are narrow strips of graphene. During GNRs fabrication process, the occurrence of defects that ultimately change electronic properties of graphene is difficult to avoid. The modelling of GNRs with defects is crucial to study the non-idealities effects. In this work, nearest-neighbor tight-binding (TB) model for GNRs is presented with three main simplifying assumptions. They are utilization of basis function, Hamiltonian operator discretization and plane wave approximation. Two major edges of GNRs, armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs) are explored. With single vacancy (SV) defects, the components within the Hamiltonian operator are transformed due to the disappearance of tight-binding energies around the missing carbon atoms in GNRs. The size of the lattices namely width and length are varied and studied. Non-equilibrium Green's function (NEGF) formalism is employed to obtain the electronics structure namely band structure and density of states (DOS) and all simulation is implemented in MATLAB. The band structure and DOS plot are then compared between pristine and defected GNRs under varying length and width of GNRs. It is revealed that there are clear distinctions between band structure, numerical DOS and Green's function DOS of pristine and defective GNRs.

Role of edge patterning and metal contact for extremely low contact resistance on graphene

  • Jo, Seo-Hyeon;Park, Hyung-Youl;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.294.2-294.2
    • /
    • 2016
  • Graphene, a sigle atomic layered structure of graphite, has drawn many scientific interests for attractive future electronics and optoelectronics beyond silicon-based technology because of its robust physical, optical, and electrical properties. But high metal-graphene contact resistance prevents the successful integration of high speed graphene devices and circuits, although pristine graphene is known to have a novel carrier transport property. Meanwhile, in the recently reported metal-graphene contact studies, there are many attempts to reduce the metal-graphene contact resistance, such as doping and one-dimensional edge contact. However, there is a lack of quantitative analysis of the edge contact scheme through variously designed patterns with different metal contact. We first investigate the effets of edge contact (metal-graphene interface) on the contact resistance in terms of edge pattern design through patterning (photolithography + plasma etching) and electral measurements. Where the contact resistance is determined using the transfer length method (TLM). Finally, we research the role of metal-kind (Palladium, Copper, and Tianium) on the contact resistance through the edge-contacted devices, eventually minimizing contact resistance down to approximately $23{\Omega}{\cdot}{\mu}m$ at room temperature (approximately $19{\Omega}{\cdot}{\mu}m$ at 100 K).

  • PDF

PEDOT:PSS/그래핀 코팅된 폴리아미드/폴리우레탄 혼방 편직물 기반의 전기전도성 텍스타일 제조 (Fabrication of Electroconductive Textiles Based Polyamide/Polyurethan Knitted Fabric Coated with PEDOT:PSS/Non-oxidized Graphene)

  • ;조길수
    • 한국의류산업학회지
    • /
    • 제24권1호
    • /
    • pp.146-155
    • /
    • 2022
  • We proposed a simple process of creating electroconductive textiles by using PEDOT:PSS(Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate))/non-oxidized graphene to coat polyamide or polyurethane knitted fabric for smart healthcare purposes. Electroconductive textiles were obtained through a coating process that used different amounts of PEDOT:PSS/non-oxidized graphene solutions on polyamide/polyurethane knitted fabric. Subsequently, the surface, electrical, chemical, weight change, and elongation properties were evaluated according to the ratio of PEDOT:PSS/non-oxidized graphene composite(1.3 wt%:1.0 wt%; 1.3 wt%:0.6 wt%; 1.3 wt%:0.3 wt%) and the number of applications(once, twice, or thrice). The specimens' surface morphology was observed by FE-SEM. Further, their chemical structures were characterized using FTIR and Raman spectroscopy. The electrical properties measurement (sheet resistance) of the specimens, which was conducted by four-point contacts, shows the increase in conductivity with non-oxidized graphene and the number of applications in the composite system. Moreover, a test of the fabrics' mechanical properties shows that PEDOT:PSS/non-oxidized graphene-treated fabrics exhibited less elongation and better ability to recover their original length than untreated samples. Furthermore, the PEDOT:PSS/non-oxidized graphene polyamide/polyurethane knitted fabric was tested by performing tensile operations 1,000 times with a tensile strength of 20%; Consequently, sensors maintained a constant resistance without noticeable damage. This indicates that PEDOT:PSS/non-oxidized graphene strain sensors have sufficient durability and conductivity to be used as smart wearable devices.

Study of a large-area graphene transistor on a CaF2 substrate using a full-coverage polymer film as an additional dielectric

  • Yoojoo Yun;Jinseok Oh;Yoonhyuck Yi;Hyunkyung Lee;Byeongwan Kim;Haeyong Kang
    • Journal of the Korean Physical Society
    • /
    • 제81권
    • /
    • pp.942-947
    • /
    • 2022
  • We report the electrical transport properties of a dual-gate graphene device placed on a CaF2 substrate. A hexagonal boron nitride top-gate dielectric was introduced to confirm the electrical characteristics of the CaF2/graphene transistor because it is difficult to inject sufficient carriers through the CaF2 substrate owing to its thickness of 500 ㎛, and the typical ambipolar behavior of graphene with a slight n-doping effect was clearly observed. In addition, we used a polymethyl methacrylate (PMMA) film as a top-gate dielectric for large-scale graphene devices grown via chemical vapor deposition, which was transferred onto a CaF2 substrate. We controlled the high gate leakage current caused by the breakdown of the polymer due to non-uniformity by applying the film-transfer process rather than the direct coating method on the graphene device. Furthermore, the transport properties of large-area graphene in contact with CaF2 are discussed with respect to the effect of top-contacted PMMA.

UV/ozone 산화처리 및 화학적 식각공정을 적용한 그래핀 Grain Boundary 평가 방법 (Evaluation Method for Graphene Grain Boundary by UV/ozone-oxidation Chemical-etching Process)

  • 강재운;박홍식
    • 센서학회지
    • /
    • 제25권4호
    • /
    • pp.275-279
    • /
    • 2016
  • Chemical vapor deposited (CVD) polycrystalline graphene is widely used for various sensor application because of its extremely large surface-to-volume ratio. The electrical properties of CVD-graphene is significantly affected by the grain size and boundaries (GGBs), but evaluation of GGB of continuous monolayer graphene is difficult. Although several evaluation methods such as tunneling electron microscopy, confocal Raman, UV/ozone-oxidation are typically used, they still have issues in evaluation efficiency and accuracy. In this paper, we suggest an improved evaluation method for precise and simple GGB evaluation which is based on UV/ozone-oxidation and chemical etching process. Using this method, we could observe clear GGBs of CVD-graphene layers grown by different process conditions and statistically evaluate average grain sizes varying from $1.69{\sim}4.43{\mu}m$. This evaluation method can be used for analyzing the correlation between the electrical properties and grain size of CVD-graphene, which is essential for the development of graphene-based sensor devices.