• Title/Summary/Keyword: Electrical Power subsystem

Search Result 79, Processing Time 0.024 seconds

THE DESIGN AND ANALYSIS PROGRAM FOR THE DEVELOPMENT OF LEO SATELLITE ELECTRICAL POWER SUBSYSTEM (저궤도 인공위성 전력계 개발을 위한 설계 분석 프로그램)

  • Lee, Sang-Kon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.179-194
    • /
    • 2007
  • The design and analysis of satellite power subsystem is an important driver for the mass, size, and capability of the satellite. Every other satellite subsystem is affected by the power subsystem, and in particular, important issues such as launch vehicle selection, thermal design, and structural design are largely influenced by the capabilities and limitations of the power system. This paper introduces a new electrical power subsystem design program for the rapid development of LEO satellite and shows an example of design results using other LEO satellite design data. The results shows that the proposed design program can be used the optimum sizing and the analytical prediction of the on-orbit performance of satellite electrical power subsystem.

Conceptual Design of Electrical Power Subsystem for Cube Satellite with Permanent Magnet Attitude Stabilization Method (큐브위성용 상용 전력계 부품을 적용한 영구자석 자세제어 안정화 방식 큐브위성의 전력계 개념설계)

  • Park, Tae-Yong;Chae, Bong-Geon;Jung, Hyon-Mo;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.42-47
    • /
    • 2014
  • The role of Electrical Power Subsystem (EPS) is to generate a power and distribute it to the electrical devices for the system operation. For on-orbit operation of cube satellite, it is also necessary to supply power to on-board mission devices as commercial satellite does. Recently, commercial EPS products dedicated for the cube satellite application has been developed and widely used for the power subsystem design. In this paper, a permanent magnet attitude stabilization method without external power has been introduced because it has advantage from power consumption point of view and the EPS design of cube satellite by applying the commercial EPS products has been introduced and investigated. This paper also deals with the specification of the commercial EPS products for the beginner of the cube satellite design.

Electrical Power Subsystem Performance Evaluation of the GEO Satellite (정지궤도위성 전력계 성능 평가)

  • Koo, Ja Chun;Ra, Sung Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.31-41
    • /
    • 2014
  • The satellite on geostationary orbit accommodates multiple payloads into a single spacecraft platform and launched in June 26, 2010. The Electrical Power Subsystem provides a fully regulated power bus at $50V_{DC}$ in sunlight and eclipse conditions. The electrical power required to the satellite is generated by a solar array wing and the energy is stored by a Li-Ion battery with a capacity of 192.5Ah. This paper selects the main design parameters, compares and analyzes with the results at ground test and in orbit operation to apply this performance evaluation of the Electrical Power Subsystem to next satellite design on geostationary orbit. The Electrical Power Subsystem is demonstrated nominal behavior without significant degradation through the performance evaluation from design to in orbit operation.

A Study on Voltage and Reactive Power Control Methodology using Integer Programming and Local Subsystem (지역 계통 구성과 Integer programming을 이용한 전압 및 무효전력 제어방안 연구)

  • Kim, Tae-Kyun;Choi, Yun-Hyuk;Seo, Sang-Soo;Lee, Byong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.543-550
    • /
    • 2008
  • This paper proposes an voltage and reactive power control methodology, which is motivated towards implementation in the korea power system. The main voltage control devices are capacitor banks, reactor banks and LTC transformers. Effects of control devices are evaluated by local subsystem's cost computations. This local subsystem is decided by 'Tier' and 'Electrical distance' in the whole system. The control objective at present is to keep the voltage profile within constraints with minimum switching cost. A robust control strategy is proposed to make the control feasible and optimal for a set of power-flow cases that may occur important event from system. This studies conducted for IEEE 39-bus low and high voltage contingency cases indicate that the proposed control methodology is much more effective than PSS/E simulation tool in deciding switching of capacitor and reactor banks.

Modeling and Simulation of Electrical Power System of Electric Vehicle (전기자동차 전력 시스템의 모델링 및 시뮬레이션)

  • Lee, Jea-Moon;Cho, Bo-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.355-358
    • /
    • 1996
  • Electrical Power System (EPS) of Electric Vehicle which consists of batteries, motor and driving subsystem, has been modeled. A battery model is modeled with an electrical circuit representing a characteristics of real battery. Driving subsystem is modeled as three different level namely exact, average and functional models. Load profile includes road information, speed profile and EV mechanical parameters, which are incorporated into a reference torque in the driving subsystem model. A system model is integrated to simulate the performance of electric vehicle such as energy balance, battery status, and electrical stress of each subsystem.

  • PDF

Development of Electrical Power Subsystem of Cube Satellite STEP Cube Lab for Verification of Space-Relevant Technologies

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.31-37
    • /
    • 2016
  • STEP Cube Lab (Cube Laboratory for Space Technology Experimental Project) is a 1U standardized pico-class satellite. Its main mission objective is an on-orbit verification of five fundamental core space technologies. For assuring a successful missions of the STEP Cube Lab with five payloads, electrical power subsystem (EPS) shall sufficiently provide an electrical power to payloads and bus systems of the satellite during an entire mission life. In this study, a design process of EPS system was introduced including power budget analysis considering a mission orbit and various mission modes of the satellite. In conclusion, adequate EPS hardware in compliance with design requirements were selected. The effectiveness and mission capability of EPS architecture design were confirmed through an energy balance analysis (EBA).

Application of Piezoelectric Smart Structures for Statistical Energy Analysis (압전 지능 구조물을 이용한 통계적 에너지 해석 기법)

  • 김재환;김정하;김재도
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.257-264
    • /
    • 2001
  • In this research, piezoelectric smart structures are applied for SEA(Statistical Energy Analysis), which is well known approach for high frequency analysis. A new input power measurement based on piezoelectric electrical power measurement is proposed and compared with the conventional method in SEA. As an example, a simple aluminum beam on which piezoelectric actuator is attached is considered. By measuring the electrical impedance and electrical current of the piezoelectric actuator, the electrical power given on the actuator is found and this is In turn converted into the mechanical energy. From the measured value of the stored energy of the beam, the Internal loss factor is calculated and this value shows a good agreement with that given by the conventional method as well as the theoretical value. To compare the coupling loss factor, L-shape beam system which consists of a aluminum beam subsystem and a steel beam subsystem coupled by three pin is taken as second example. The input power and stored energy of each subsystem are found by the proposed approach. The coupling loss factor found by the electrical input power obtained from the piezoelectric actuator exhibits similar trend to the value found by the conventional method as well as the theoretical value. In conclusion, the use of SEA for high frequency application of piezoelectric smart structures is Possible. Especially, the input power that is essential for SEA can be found accurately by measuring the electrical input power of the piezoelectric actuator.

  • PDF

Development of Energy Balance Analysis Program for LEO Satellite Design (저궤도 인공위성 설계를 위한 에너지 균형 분석 프로그램 개발)

  • Lee, Sang-Kon;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.850-857
    • /
    • 2007
  • The design and analysis of satellite electrical power subsystem is an important driver for the mass, size, and capability of the satellite. In particular, satellite energy balance analysis is critical in determining the capabilities and limitations of the power subsystem and the success of satellite operations. This paper introduces a new energy balance analysis program for LEO satellite development and shows an example of test results using other LEO satellite design data. The test results show that the proposed energy balance program can be used the optimal sizing of satellite electrical power subsystem and the analytical prediction of the on-orbit energy balance during satellite mission operations.

Fault Management Design Verification Test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit Satellite (저궤도위성의 전력계 및 자세제어계 고장 관리 설계 검증시험)

  • Lee, Sang-Rok;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.14-23
    • /
    • 2013
  • Fault management design of the satellite describes preparations for failures which can occur during operational phase. Fault management design contains detection and isolation function of anomaly, and also it contains function to maintain the satellite in safe condition until the ground station finds out a cause of failure and takes a countermeasure. Unlike normal operation, safing operation is automatically performed by Power Control and Distribution Unit and Integrated Bus Management Unit which loads Flight Software without intervention of ground station. Since fault management operation is automatical, fault management logic and functionality of relevant hardware should be thoroughly checked during ground test phase, and error which is similar to actual should be carefully applied without damage. Verification test for fault management design is conducted for various subsystems of satellite. In this paper, we show the design process of fault management design verification test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit satellite flight model and the test results.

Key Application Technologies of High Efficiency Power Quality Control Systems

  • Liu, Ding-Guo;Shuai, Zhi-Kang;Tu, Chun-Ming;Cheng, Ying;Luo, An
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.458-468
    • /
    • 2013
  • Large capacity reactive power compensation and harmonic control in the low-voltage grid of an enterprise, are important technical means to improve power quality and reduce power loss. In this paper, the principle of an efficient power quality controller is analyzed. Then, key application technologies of the HPQC which would influence the performances of the HPQC are studied. Based on an analysis of the harmonic shunt problem, a frequency dividing control strategy of the HPQC continuous subsystem is proposed. A parameter design method of the HPQC discrete subsystem and its installation method are also proposed to ensure the system compensation effect. HPQC systems have been designed for a copper foil plant. The effectiveness of this paper has been verified by the simulation and application results.