• Title/Summary/Keyword: Electrical Power

Search Result 26,975, Processing Time 0.049 seconds

Hybrid Control System for Managing Voltage and Reactive Power in the JEJU Power System

  • Seo, Sang-Soo;Choi, Yun-Hyuk;Kang, Sang-Gyun;Lee, Byong-Jun;Shin, Jeong-Hoon;Kim, Tae-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.429-437
    • /
    • 2009
  • This paper proposes a hybrid voltage controller based on a hierarchical control structure for implementation in the Jeju power system. The hybrid voltage controller utilizes the coordination of various reactive power devices such as generators, switched shunt devices and LTC to regulate the pilot voltage of an area or zone. The reactive power source can be classified into two groups based on action characteristics, namely continuous and discrete. The controller, which regulates the pilot bus voltage, reflects these characteristics in the coordination of the two types of reactive power source. However, the continuous type source like generators is a more important source than the discrete type for an emergency state such as a voltage collapse, thereby requiring a more reactive power reserve of the continuous type to be utilized in the coordination in order to regulate the pilot bus voltage. Results show that the hybrid controller, when compared to conventional methods, has a considerable improvement in performance when adopted to control the pilot bus voltage of the Jeju island system.

Hardware Simulator for LVRT Operation Analysis of Grid-Tied PMSG Wind Power System (계통연계형 PMSG 풍력발전시스템의 LVRT 동작 분석을 위한 하드웨어 시뮬레이터)

  • Lee, Jae-Wook;Kim, Jae-Hyuk;Choi, Young-Do;Han, Byung-Moon;Yoon, Young-Doo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1219-1226
    • /
    • 2014
  • This paper introduces a hardware simulator for the LVRT operation analysis of the grid-tied PMSG wind power system with a power dissipation circuit. The power dissipation circuit, which is composed of chopper and resistor, suppresses the sudden increase of DC-link voltage in the back-to-back converter of the grid-tied PMSG wind power system. The LVRT operation was first analyzed using computer simulations with PSCAD/EMTDC. A wind power simulator including the power dissipation circuit and the fault simulator composed of variac and IGBT were built to analyze the LVRT operation. Various experiments were conducted to verify the effectiveness of the power dissipation circuit for the LVRT operation. The developed hardware simulator can be extensively utilized for the analysis of various LVRT operations of the grid-tied wind power system.

Reliability Evaluation with Wind Turbine Generators and an Energy Storage System for the Jeju Island Power System (제주도 계통에서의 풍력발전기 및 ESS를 고려한 신뢰도 평가)

  • Oh, Ungjin;Lee, Yeonchan;Lim, Jintaek;Choi, Jaeseok;Yoon, Yongbeum;Chang, Byunghoon;Cho, Sungmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • This paper proposes probabilistic reliability evaluation model of power system considering Wind Turbine Generator(WTG) integrated with Energy Storage System(ESS). Monte carlo sample state duration simulation method is used for the evaluation. Because the power output from WTG units usually fluctuates randomly, the power cannot be counted on to continuously satisfy the system load. Although the power output at any time is not controllable, the power output can be utilized by ESS. The ESS may make to smooth the fluctuation of the WTG power output. The detail process of power system reliability evaluation considering ESS cooperated WTG is presented using case study of Jeju island power system in the paper.

Optimal Design of Power Grid and Location of Offshore Substation for Offshore Wind Power Plant (해상풍력발전단지의 전력망과 해상변전소 위치에 대한 최적 설계)

  • Moon, Won-Sik;Won, Jong-Nam;Huh, Jae-Sun;Jo, Ara;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.984-991
    • /
    • 2015
  • This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.

Electrical Characteristics of Insulation Paper for Distribution Transformers (배전변압기용 절연지의 전기적 특성)

  • Jung, J.W.;Song, I.K.;Lee, B.S.;Han, J.H.;Kweon, D.J.;Kim, C.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.1-5
    • /
    • 2001
  • This paper describes the electrical characteristics of Nomex paper employed as an insulating material of distribution transformers. The relative permittivities(dielectric constants) and $tan{\delta}$(dielectric dissipation factors) were measured as a dielectric characteristic and the partial discharge inception voltages(PDIVs) and breakdown voltages were also measured as an electrical strength characteristic of Nomex paper. As a result, the permittivity and $tan{\delta}$ of Nomex paper showed temperature and frequency dependency. Especially, the permittivity of 0.18mm Nomex paper was 2.4 according to the ASTM condition. And the PDIVs and breakdown voltages were, almost linearly increased with the thickness of Nomex paper and its electrical strength was better than conventional kraft paper.

  • PDF

Improved Global Maximum Power Point Tracking for Photovoltaic System via Cuckoo Search under Partial Shaded Conditions

  • Shi, Ji-Ying;Xue, Fei;Qin, Zi-Jian;Zhang, Wen;Ling, Le-Tao;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.287-296
    • /
    • 2016
  • Conventional maximum power point tracking (MPPT) methods are ineffective under partially shaded conditions because multiple local maximum can be exhibited on power-voltage characteristic curve. This study proposes an improved cuckoo search (ICS) MPPT method after investigating the cuckoo search (CS) algorithm applied in solving multiple MPPT. The algorithm eliminates the random step in the original CS algorithm, and the conception of low-power, high-power, normal and marked zones are introduced. The adaptive step adjustment is also realized according to the different stages of the nest position. This algorithm adopts the large step in low-power and marked zones to reduce search time, and a small step in high-power zone is used to improve search accuracy. Finally, simulation and experiment results indicate that the promoted ICS algorithm can immediately and accurately track the global maximum under partially shaded conditions, and the array output efficiency can be improved.

Dual Bias Modulator for Envelope Tracking and Average Power Tracking Modes for CMOS Power Amplifier

  • Ham, Junghyun;Jung, Haeryun;Bae, Jongsuk;Lim, Wonseob;Hwang, Keum Cheol;Lee, Kang-Yoon;Park, Cheon-Seok;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.802-809
    • /
    • 2014
  • This paper presents a dual-mode bias modulator (BM) for complementary metal oxide semiconductor (CMOS) power amplifiers (PAs). The BM includes a hybrid buck converter and a normal buck converter for an envelope tracking (ET) mode for high output power and for an average power tracking (APT) mode for low output power, respectively. The dual-mode BM and CMOS PA are designed using a $0.18-{\mu}m$ CMOS process for the 1.75 GHz band. For the 16-QAM LTE signal with a peak-to-average power ratio of 7.3 dB and a bandwidth of 5 MHz, the PA with the ET mode exhibited a poweradded efficiency (PAE) of 39.2%, an EVM of 4.8%, a gain of 19.0 dB, and an adjacent channel leakage power ratio of -30 dBc at an average output power of 22 dBm, while the stand-alone PA has a PAE of 8% lower at the same condition. The PA with APT mode has a PAE of 21.3%, which is an improvement of 13.4% from that of the stand-alone PA at an output power of 13 dBm.

STATIC AND DYNAMIC BEHAVIOR OF HIGH-CURRENT RECTIFIER DIODES IN RESISTANCE WELDING INVERTER POWER SOURCES

  • Mecke, Hubert;Doebbelin, Reinhard;Fischer, Wolfgang
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1003-1007
    • /
    • 1998
  • In recent years inverter power sources are more and more used for resistance welding processes. In this paper some results of investigation into the static and dynamic behavior of high-current rectifier diodes used in these inverter power sources will be discussed. By means of digital simulation, losses and efficiency have been determined depending on the power semiconductor parameters.

  • PDF

Estimation of Transferred Power from a Noise Source to an IC with Forwarded Power Characteristics

  • Pu, Bo;Kim, Taeho;Kim, SungJun;Kim, Jong-Hyeon;Kim, SoYoung;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.233-239
    • /
    • 2013
  • This paper proposes an accurate approach for predicting transferred power from a noise source to integrated circuits based on the characteristics of the power transfer network. A power delivery trace on a package and a printed circuit board are designed to transmit power from an external source to integrated circuits. The power is demonstrated between an injection terminal on the edge of the printed circuit board and integrated circuits, and the power transfer function of the power distribution network is derived. A two-tier calibration is applied to the test, and scattering parameters of the network are measured for the calculation of the power transfer function. After testing to obtain the indispensable parameters, the real received and tolerable power of the integrated circuits can be easily achieved. Our proposed estimation method is an enhancement of the existing the International Electrotechnical Commission standard for precise prediction of the electromagnetic immunity of integrated circuits.

Evaluation of the Wind Power Penetration Limit and Wind Energy Penetration in the Mongolian Central Power System

  • Ulam-Orgil, Ch.;Lee, Hye-Won;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.852-858
    • /
    • 2012
  • This paper describes evaluation results of the wind power penetration limit (WPPL) and the wind energy penetration (WEP) in the Mongolian central power system (MCPS). A wind power plant (WPP) in a power system possesses an output power limit because the power system must maintain a balance between the generation and consumption of electricity at all times in order to achieve an adequate level of quality. The instantaneous penetration limit (IPL) of wind generation at a load is determined as the minimum of the three technical constraints: the minimum output, the ramp rate capability, and the spinning reserve of the conventional generating units. In this paper, a WPPL is defined as the maximum IPL divided by the peak load. A maximal variation rate (VR) of wind power is a major factor in determining the IPL, WPPL, and WEP. This paper analyzes the effects of the maximal VR of wind power on the WPPL, WEP, and capacity factor (CF) in the MCPS. The results indicate that a small VR can facilitate a large amount of wind energy while maintaining a high CF with increased wind power penetration.