• Title/Summary/Keyword: Electrical Performance

Search Result 15,407, Processing Time 0.044 seconds

Effect of Adhesion Strength Between Flexible Substrates and Electrodes on the Durability of Electrodes (유연 기판과 전극 사이의 접합력이 전극의 내구성에 미치는 영향)

  • Doyeon Im;Byoung-Joon Kim;Geon Hwee Kim;Taechang An
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.86-92
    • /
    • 2024
  • Flexible electronic devices are exposed to repeated mechanical deformation; therefore, electrode performance is an important element. Recently, a new technology has been developed to improve the adhesion strength between polymer substrates and metal thin films through the cross-linking reaction of bovine serum albumin (BSA) bioconjugation proteins; however, additional performance evaluation as an electrode is necessary. Therefore, in this study, we investigated the effect of adhesive strength between a flexible substrate and a metal thin film on the performance of a flexible electrode. Cracks and changes in the electrical resistance of the electrode surface were observed through outer bending fatigue tests and tensile tests. As a result of a bending fatigue test of 50,000 cycles and a tensile test at 10% strain, the change in the electrical resistance of the flexible electrode with a high adhesion strength was less than 40%, and only a few microcracks were formed on the surface; thus, the electrical performance did not significantly deteriorate. Through this study, the relationship between the adhesion strength and electrical performance was identified. This study will provide useful information for analyzing the performance of flexible electrodes in the commercialization of flexible electronic devices in the future.

Analytical Performance Modelling of Slotted Surface-Mounted Permanent Magnet Machines with Rotor Eccentricity

  • Yan, Bo;Wang, Xiuhe;Yang, Yubo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.778-789
    • /
    • 2017
  • This paper presents an improved subdomain method to predict the magnet field distributions and electromagnetic performance of the surface-mounted permanent magnet (SPM) machines with static or dynamic eccentricity. Conventional subdomain models are either based on the scalar magnet potential to predict the rotor eccentricity effect or dependent on the magnetic vector potential without considering the eccentric rotor. In this paper, both the magnetic vector potential and the perturbation theory are introduced in order to accurately calculate the effect of rotor eccentricity on the open-circuit and armature reaction performance. The calculation results are presented and validated by the corresponding finite-element method (FEM) results.

Design of the Ground Resistance Measuring System to the Earth-Noise

  • Jung Min-Jae;Joo Hyung-Jun;Lee Ki-Hong;Oh Sung-Up;Jung Jae-Ki;Seong Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.566-570
    • /
    • 2001
  • Generally, grounding systems are responsible for the safe operation of a power system. Their performance guarantees equipment protection and personnel safety under condition of the limited ground potential rise and touch voltages as well as step voltages under ground fault conditions. Therefore, it is necessary to measure the ground resistance frequently for checking the performance of grounding system, In this paper the ground resistance measuring system using digital signal processor and high-performance L-C resonant band pass filter is presented. The signal current magnitude for measuring ground resistance in this system is $10^{-1}[A]\;to\;5\times10^{-2}[A]$ and the current frequency is 30[Hz].

  • PDF

Mathematical Modeling on AC Pollution Flashover Performance of Glass and Composite Insulator

  • Prakash, N.B.;Parvathavarthini, M.;Madavan, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1796-1803
    • /
    • 2015
  • While considering the current scenario, in this world power demand goes on increases day by day. Frequent power outages occur in high voltage transmission line due to the deprived performance of polluted insulators; this affects overall operation of power system and may indirectly impinge on the growth of production sector. Many researchers are keenly taking efforts to provide highly reliable and stable power to neediest. In this paper, A.C pollution flashover performance of disc type glass insulator and composite long rod insulators investigation under various artificial pollutions by varying Equivalent Salt Density Deposition (ESDD) levels. Here, we use different types of pollution methods like binding method, dipping method and spraying methods with different types of pollutants concentration. Based on dimensional analysis, four different Mathematical models have been developed to predict the A.C pollution Flashover Voltage (FOV) of insulators. Both the experimental and mathematically modeled results are compared; it's observed that mathematical model 3 yields better results.

High-Performance Voltage Controller Design Based on Capacitor Current Control Model for Stand-alone Inverters

  • Byen, Byeng-Joo;Choe, Jung-Muk;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1635-1645
    • /
    • 2015
  • This study proposes high-performance voltage controller design that employs a capacitor current control model for single-phase stand-alone inverters. The single-phase stand-alone inverter is analyzed via modeling, which is then used to design the controller. A design methodology is proposed to maximize the bandwidth of the feedback controller. Subsequently, to compensate for the problems caused by the bandwidth limitations of the controller, an error transfer function that includes the feedback controller is derived, and the stability of the repetitive control scheme is evaluated using the error transfer function. The digital repetitive controller is then implemented. The simulation and experimental results show that the performance of the proposed controller is high in a 1.5 kW single-phase stand-alone inverter prototype.

Study and Simulation of RST Regulator Applied to a Double Fed Induction Machine (DFIM)

  • Akkari, N.;Chaghi, A.;Abbdessemed, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.308-313
    • /
    • 2008
  • This article proposes the study and simulation of an RST regulator based on a double fed induction machine. The RST polynomial controller can improve the double fed induction machine performance in terms of overshoot, rapidity, cancellation of disturbance, and capacity to maintain a high level of performance. A control law is synthesized using an RST controller. Simulation results indicate that the proposed regulator has better performance response to speed variation, sensitivity to perturbation, and robustness. The designed control algorithm is tested on a simulation matlab code.

Optimal Rotor Shape Design of Asymmetrical Multi-Layer IPM Motors to Improve Torque Performance Considering Irreversible Demagnetization

  • Mirazimi, M.S.;Kiyoumarsi, A.;Madani, Sayed M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1980-1990
    • /
    • 2017
  • A study on the multi-objective optimization of Interior Permanent-Magnet Synchronous Motors (IPMSMs) with 2, 3, 4 and 5 flux barriers per magnetic pole, based on Genetic Algorithm (GA) is presented by considering the aspect of irreversible demagnetization. Applying the 2004 Toyota Prius single-layer IPMSM as the reference machine, the asymmetrical two-, three-, four- and five-layer rotor models with the same amount of Permanent-Magnets (PMs) is presented to improve the torque characteristics, i.e., reducing the torque pulsation and increasing the average torque. A reduction of the torque pulsations is achieved by adopting different and asymmetrical flux barrier geometries in each magnetic pole of the rotor topology. The demagnetization performance in the PMs is considered as well as the motor performance; and analyzed by using finite element method (FEM) for verification of the optimal solutions.

Mixed mode exciting resonant inverter and control IC applicable to high Performance electronic ballast (고성능 전자식 안정기에 적합한 공진형 인버터의 혼합형 구동방식과 제어 IC)

  • Ryoo, Tae-Ha;Chae, Gyun;Hwang, Jong-Tae;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2786-2788
    • /
    • 1999
  • In this paper, a mixed mode exciting resonant inverter topology applicable to high performance electronic ballast is presented. Mixed mode exciting technique combines the attractive features of self exciting resonant inverter with those of external exciting one. The control IC is designed and manufactured by using a 0.8um CMOS process for 5V operation and has only 8 pins. This performs the operations of filament preheating, dimming control, output power regulation and protections. The mixed mode exciting resonant inverter with control IC has very simple structure, high performance and expensive manufacturing cost.

  • PDF

Approximate analysis for performance evaluation of serial production line

  • Lee, Noh-Sung;Seo, Ki-Sung;Ahn, Ihnseok;Choi, Joon-Youl;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.458-462
    • /
    • 1992
  • This paper presents a decomposition method to evaluate the performance measures of transfer line with unreliable machine and finite buffers. The proposed method is to decompose the transfer fine into a set of two machine lines for analysis. Nonhomogeneous lines are considered. In such fines, the machines may take the different lengths of time performing operations on parts. A simple transformation is employed in order to replace the line by a homogeneous line. The approximate transformation enables one to determine parameters of performance such as production rate and average buffer levels, and it also shows better applications for a large class of systems.

  • PDF

The Performance Improvement of Speech Recognition System based on Stochastic Distance Measure

  • Jeon, B.S.;Lee, D.J.;Song, C.K.;Lee, S.H.;Ryu, J.W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.254-258
    • /
    • 2004
  • In this paper, we propose a robust speech recognition system under noisy environments. Since the presence of noise severely degrades the performance of speech recognition system, it is important to design the robust speech recognition method against noise. The proposed method adopts a new distance measure technique based on stochastic probability instead of conventional method using minimum error. For evaluating the performance of the proposed method, we compared it with conventional distance measure for the 10-isolated Korean digits with car noise. Here, the proposed method showed better recognition rate than conventional distance measure for the various car noisy environments.