• Title/Summary/Keyword: Electrical Oscillator

Search Result 335, Processing Time 0.03 seconds

Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases (삽입 가스의 부피 팽창을 이용한 탄소나노튜브 진동기)

  • Kwon, Oh-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1092-1100
    • /
    • 2005
  • We investigated a carbon nanotube (CNT) oscillator controlled by the thermal gas expansion using classical molecular dynamics simulations. When the temperature rapidly increased, the force on the CNT oscillator induced by the thermal gas expansion rapidly increased and pushed out the CNT oscillator. As the CNT oscillator extruded from the outer nanotube, the suction force on the CNT oscillator increased by the excess van der Waals(vdW) energy. When the CNT oscillator reached at the maximum extrusion point, the CNT oscillator was encapsulated into the outer nanotube by the suction force. Therefore, the CNT oscillator could be oscillated by both the gas expansion and the excess vdW interaction. As the temperature increased, the amplitude of the CNT oscillator increased. At the high temperatures, the CNT oscillator escaped from the outer nanotube, because the force on the CNT oscillator due to the thermal gas expansion was higher than the suction force due to the excess vdW energy. By the appropriate temperature controls, such as the maximum temperature, the heating rate, and the cooling rate, the CNT oscillator could be operated.

Injection Locked Synchronization Characteristics of a Millimeter Wave Second Harmonic Oscillator (밀리미터파 대역 제2고조파 출력 발진기의 주입동기 특성)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1700-1705
    • /
    • 2013
  • A second harmonic millimeter wave oscillator utilizing sub-harmonic injection-synchronization is presented. A 8.7GHz oscillator with MES-FET is designed, and is driven as a harmonic output oscillator at 17.4GHz by means of sub-harmonic injection-synchronization. The oscillator operates as a multiplier as well as a oscillator in this scheme. Adopting this method, a high sable, high frequency millimeter wave source is obtainable even though self-oscillating frequency of an oscillator is relatively low. The range of injection-synchronization is about 26MHz, and is proportional to the input sub-harmonic power. The spectrum analysis of the 2nd harmonic output frequency shows remarkably decreased the phase noise level.

Design of a Frequency Oscillator Using A Novel DGS (새로운 DGS 구조를 이용한 주파수 발진기 설계)

  • Joung, Myung-Sup;Kim, Jong-Ok;Park, Jun-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1955-1957
    • /
    • 2003
  • This paper presents a novel defected ground structure (DGS) and its application to a microwave oscillator. The presented oscillator is designed so as to use the suggested defected ground structure as a feedback loop inducing a negative resistance as well as a frequency-selective circuit. Applying the feedback loop between the drain and the gate of a FET device produces precise phase conversion in the feedback loop. The equivalent circuit parameters of the DGS are extracted by using a three-dimensional EM calculations and simple circuit analysis method. The implemented 1.07 GHz oscillator exhibits 0 dBm output power with over 15% dc-to-RF power efficiency and -106 dBc/Hz phase noise at 100 kHz offset from carrier.

  • PDF

Recognition of the Korean alphabet Using Neural Oscillator Phase model Synchronization

  • Kwon, Yong-Bum;Lee, Jun-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.315-317
    • /
    • 2003
  • Neural oscillator is applied in oscillatory systems (Analysis of image information, Voice recognition. Etc...). If we apply established EBPA(Error back Propagation Algorithm) to oscillatory system, we are difficult to presume complicated input's patterns. Therefore, it requires more data at training, and approximation of convergent speed is difficult. In this paper, I studied the neural oscillator as synchronized states with appropriate phase relation between neurons and recognized the Korean alphabet using Neural Oscillator Phase model Synchronization.

  • PDF

Novel Oscillator Incorporating a Compact Microstrip Ring Type Resonant Cell with High Efficiency and Superior Harmonic Characteristics

  • Hwang Cheol-Gyu;Myung Noh-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.92-96
    • /
    • 2005
  • This paper presents a novel microwave oscillator incorporating a simple microstrip ring type resonant cell as its terminating resonance component. Reduced chip size, higher dc-ac power efficiency, superior harmonic characteristics can be achieved from the introduction of a compact microstrip ring resonator cell. The oscillator provides a second harmonic suppression of 26.51 dB and the output power of 2.046 dBm at 2.11 GHz.

surface acoustic wave oscillator hymidity sensor using hexafluoropropene plasma thin film (헥사플루오르프로펜 플라즈마박막을 이용한 표면탄성파발진기 습도센서)

  • 박남천;서은덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.144-146
    • /
    • 1992
  • Surface acoustic wave(SAW) oscillator offers many attractive features for application to vapor sensors. The perturbation of SAW velocity by the hexafluoropropence plasma polymer thin film has been studied for relative humidity sensing. adsorption of moisture produces rapid aid changes in the properties of the film, resulting in a change in the velocity of surface acoustic waves and, hence, in the frequency of one SAW oscillator. The device used in our experiments have 55 MHZ SAW oscillator fabricated on a LiNbO substrate.

  • PDF

CMOS Integrated Multiple-Stage Frequency Divider with Ring Oscillator for Low Power PLL

  • Ann, Sehyuk;Park, Jusang;Hwang, Inwoo;Kim, Namsoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.185-189
    • /
    • 2017
  • This paper proposes a low power frequency divider for an integrated CMOS phase-locked loop (PLL). An injection-locked frequency divider (ILFD) was designed, along with a current-mode logic (CML) frequency divider in order to obtain a broadband and high-frequency operation. A ring oscillator was designed to operate at 1.2 GHz, and the ILFD was used to divide the frequency of its input signal by two. The structure of the ILFD is similar to that of the ring oscillator in order to ensure the frequency alignment between the oscillator and the ILFD. The CML frequency divider was used as the second stage of the divider. The proposed frequency divider was applied in a conventional PLL design, using a 0.18 ${\mu}m$ CMOS process. Simulation shows that the proposed divide-by-two ILFD and the divide-by-eight CML frequency dividers operated as expected for an input frequency of 1.2 GHz, with a power consumption of 30 mW.

Design of Tunable Quadratic Active-C Oscillator (발진주파수 조절이 가능한 2차 능동-C 발진기 설계)

  • Ahn, Joung-Cheol;Choi, Seok-Woo;Shin, Yun-Tae;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.461-464
    • /
    • 1988
  • The design of VCO using OTA as active element is discussed in this paper. Several Quadrature oscillator structures ere presented. They use only OTAs and capacitors end are very useful for IC fablication. The frequency of oscillator, $\omega_0$ are proportional to the gm of the OTA and the structures are appropriate for high frequency yea and sinusoidal oscillator operation.

  • PDF

A Low Power Multi Level Oscillator Fabricated in $0.35{\mu}m$ Standard CMOS Process ($0.35{\mu}m$ 표준 CMOS 공정에서 제작된 저전력 다중 발진기)

  • Chai Yong-Yoong;Yoon Kwang-Yeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.399-403
    • /
    • 2006
  • An accurate constant output voltage provided by the analog memory cell may be used by the low power oscillator to generate an accurate low frequency output signal. This accurate low frequency output signal may be used to maintain long-term timing accuracy in host devices during sleep modes of operation when an external crystal is not available to provide a clock signal. Further, incorporation of the analog memory cell in the low power oscillator is fully implementable in a 0.35um Samsung standard CMOS process. Therefore, the analog memory cell incorporated into the low power oscillator avoids the previous problems in a oscillator by providing a temperature-stable, low power consumption, size-efficient method for generating an accurate reference clock signal that can be used to support long sleep mode operation.

A Design and Fabrication of a 0.18μm CMOS Colpitts Type Voltage Controlled Oscillator with a Cascode Current Source (0.18μm NMOS 캐스코드 전류원 구조의 2.4GHz 콜피츠 전압제어발진기 설계 및 제작)

  • Kim, Jong-Bum;You, Chong-Ho;Choi, Hyuk-San;Hwang, In-Gab
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2273-2277
    • /
    • 2010
  • In this paper a 2.4GHz CMOS colpitts type microwave oscillator was designed and fabricated using H-spice and Cadence Spetre. There are 140MHz difference between the oscillation frequency and the resonance frequency of a tank circuit of the designed oscillator. The difference is seemed to be due to the parasitic component of the transistor. The inductors used in this design are the spiral inductors proposed in other papers. Cascode current source was used as a bias circuit of a oscillator and the output transistor of the current source is used as the oscillation transistor. A common drain buffer amplifier was used at the output of the oscillator. The measured oscillation frequency and output power of the oscillator are 2.173GHz and -5.53dBm.