• Title/Summary/Keyword: Electrical Isolation

Search Result 617, Processing Time 0.029 seconds

The Design of a Sub-Harmonic Dual-Gate FET Mixer

  • Kim, Jeongpyo;Lee, Hyok;Park, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, a sub-harmonic dual-gate FET mixer is suggested to improve the isolation characteristic between LO and RF ports of an unbalanced mixer. The mixer was designed by using single-gate FET cascode structure and driven by the second harmonic component of LO signal. A dual-gate FET mixer has good isolation characteristic since RF and LO signals are injected into gatel and gate2, respectively. In addition, the isolation characteristic of a sub-harmonic mixer is better than that of a fundamental mixer due to the large frequency separation between the LO and RF frequencies. As RF power was -30 ㏈m and LO power was 0 ㏈m, the designed mixer yielded the -47.17 ㏈m LO-to-RF leakage power level, 10 ㏈ conversion gain, -2.5 ㏈m OIP3, -12.5 ㏈m IIP3 and -1 ㏈m 1 ㏈ gain compression point. Since the LO-to-RF leakage power level of the designed mixer is as good as that of a double-balanced mixer, the sub-harmonic dual-gate FET mixer can be utilized instead.

Performance Analysis of High Efficiency DC-DC Chopper added in Electric Isolation (고효율 절연형 DC-DC 초퍼의 특성해석)

  • Kwak, Dong-Kurl;Lee, Bong-Seob;Kim, Choon-Sam;Jung, Do-Young;Kim, Soo-Kwang
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.115-117
    • /
    • 2007
  • This paper is analyzed for DC-DC chopper performance of high efficiency added in electric isolation. The general converters of high efficiency are made that the power loss of the used switching devices is minimized. To achieve high efficiency system, the proposed chopper is constructed by using a partial resonant circuit. The control switches using in the chopper are operated with soft switching for a partial resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of chopper is high. And the proposed chopper is added in a electric isolation. When the power conversion system is required to electric isolation, the proposed chopper is adopted with system development of high efficiency. The soft switching operation and the system efficiency of the proposed chopper is verified by digital simulation and experimental results.

  • PDF

Isolation Improvement of a Broadband Antenna Using a High-Permeability Substrate (고투자율 자성기판을 이용한 광대역 안테나 격리도 특성 개선)

  • Hur, Jun;Kay, Youngchul;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • In this paper, we propose a method of isolation improvement for broadband antennas using a high-permeability substrate. The substrate is applied for a planar monopole antenna based on near-field analysis to maintain radiation characteristics at its operating frequency while improving isolation by minimizing mutual coupling with nearby antennas at other frequency bands. To verify isolation improvement, we compare performance variations of $S_{21}$ according to the existence of the substrate using the proposed antenna and a reference antenna whose operating frequency is 2 GHz. As a result, the radiation characteristics are maintained, and $S_{21}$ performance is improved by more than 5~10 dB in the frequency band of greater than 2 GHz, which demonstrates the isolation can be improved by using the high-permeability substrate.

A Disparate Low Loss DC to 90 GHz Wideband Series Switch

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.92-97
    • /
    • 2016
  • This paper presents design and simulation of wide band RF microswitch that uses electrostatic actuation for its operation. RF MEMS devices exhibit superior high frequency performance in comparison to conventional devices. Similar techniques that are used in Very Large Scale Integration (VLSI) can be employed to design and fabricate MEMS devices and traditional batch-processing methods can be used for its manufacturing. The proposed switch presents a novel design approach to handle reliability concerns in MEMS switches like dielectric charging effect, micro welding and stiction. The shape has been optimized at actuation voltage of 14-16 V. The switch has an improved restoring force of 20.8 μN. The design of the proposed switch is very elemental and primarily composed of electrostatic actuator, a bridge membrane and coplanar waveguide which are suspended over the substrate. The simple design of the switch makes it easy for fabrication. Typical insertion and isolation of the switch at 1 GHz is -0.03 dB and -71 dB and at 85 GHz it is -0.24 dB and -29.8 dB respectively. The isolation remains more than - 20 db even after 120 GHz. To our knowledge this is the first demonstration of a metal contact switch that shows such a high and sustained isolation and performance at W-band frequencies with an excellent figure-of merit (fc=1/2.pi.Ron.Cu =1,900 GHz). This figure of merit is significantly greater than electronic switching devices. The switch would find extensive application in wideband operations and areas where reliability is a major concern.

A Design Method of Transformer Turns Ratio with the Loss Components Analysis of an Isolated Bidirectional DC-DC Converter (절연형 양방향 DC-DC 컨버터의 손실 성분 분석을 통한 변압기 권선비 설계 방법)

  • Jung, Jae-Hun;Kim, Hak-Soo;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.434-441
    • /
    • 2016
  • This paper deals with transformer turns ratio design with the consideration of loss minimization in isolated bidirectional DC-DC converter. Generally, the rms value of current, magnitude of current at switching instance, and duty ratio of a converter vary according to the turns ratio of an isolation transformer in the converter under the same voltages and output power level. Therefore, the transformer turns ratio has an effect on the total loss in a converter. The switching and conduction losses of IGBTs and MOSFETs consisting of dual-active bridge converter are analyzed, and iron and copper losses in an isolation transformer and inductor are calculated. Total losses are calculated and measured in cases of four different transformer turns ratios through simulation and experiment with 3-kW converter, and an optimum turns ratio that provides minimum losses is found. The usefulness of the proposed transformer turns ratio design approach is verified through simulation and experimental results.

Speed and Current Sensor Fault Detection and Isolation Based on Adaptive Observers for IM Drives

  • Yu, Yong;Wang, Ziyuan;Xu, Dianguo;Zhou, Tao;Xu, Rong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.967-979
    • /
    • 2014
  • This paper focuses on speed and current sensor fault detection and isolation (FDI) for induction motor (IM) drives. A new, accurate and high-efficiency FDI approach is proposed so that a system can continue operating with good performance even in the presence of speed sensor faults, current sensor faults or both. The proposed three paralleled adaptive observers are capable of current sensor fault detection and localization. By using observers, the rotor flux and rotor speed can be estimated which allows the system to run under the speed sensorless vector control mode when a speed sensor fault occurs. In order to detect speed sensor faults, a threshold-based scheme is proposed. To verify the feasibility and effectiveness of the proposed FDI strategy, experiments are carried out under different conditions based on a dSPACE DS1104 induction motor drive platform.

Simulations of Fabrication and Characteristics according to Structure Formation in Proposed Shallow Trench Isolation (제안된 얕은 트랜치 격리에서 구조형태에 따른 제작 및 특성의 시뮬레이션)

  • Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.127-132
    • /
    • 2012
  • In this paper, the edge effects of proposed structure in active region for high voltage in shallow trench isolation for very large integrated MOSFET were simulated. Shallow trench isolation (STI) is a key process component in CMOS technologies because it provides electrical isolation between transistors and transistors. As a simulation results, shallow trench structure were intended to be electric functions of passive, as device dimensions shrink, the electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage.

Performance Comparison of GPS Fault Detection and Isolation via Pseudorange Prediction Model based Test Statistics

  • Yoo, Jang-Sik;Ahn, Jong-Sun;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.797-806
    • /
    • 2012
  • Fault detection and isolation (FDI) algorithms provide fault monitoring methods in GPS measurement to isolate abnormal signals from the GPS satellites or the acquired signal in receiver. In order to monitor the occurred faults, FDI generates test statistics and decides the case that is beyond a designed threshold as a fault. For such problem of fault detection and isolation, this paper presents and evaluates position domain integrity monitoring methods by formulating various pseudorange prediction methods and investigating the resulting test statistics. In particular, precise measurements like carrier phase and Doppler rate are employed under the assumption of fault free carrier signal. The presented position domain algorithm contains the following process; first a common pseudorange prediction formula is defined with the proposed variations in pseudorange differential update. Next, a threshold computation is proposed with the test statistics distribution considering the elevation angle. Then, by examining the test statistics, fault detection and isolation is done for each satellite channel. To verify the performance, simulations using the presented fault detection methods are done for an ideal and real fault case, respectively.

Design of hybrid ring directional coupler using lambda/8 section (Lambda/8 선로를 이용한 하이브리드 방향성 결합기의 설계)

  • Paek, Hyun;Choi, Jin-Kyu;Kim, Koon-Tae;Choi, Hyuk-Jae;Kwon, So-Hyun;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1593_1594
    • /
    • 2009
  • RFID system had used same frequency for transmit and receive signal. RFID recognize range is restrict, because of receive and transmit signal coupled each other. That cause directional coupler is not ideal isolation characteristic and antenna missmatching. So we proposed lambda/8 section directional coupler and design high isolation to use RFID.

  • PDF

Multi-Dielectric & Multi-Band operations on RF MEMS

  • Gogna, Rahul;Gaba, Gurjot Singh;Jha, Mayuri;Prakash, Aditya
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.86-91
    • /
    • 2016
  • Ever increasing demand for microwave operated applications has cultivated need for high-performance universal systems capable of working on multi-bands. This objective can be realized using Multi-Dielectrics in RF MEMS capacitive switch. In this study, we present a detailed analysis of the effect of various dielectrics on switch performance. The design consists of a capacitive switch and performance is analyzed by changing the dielectric layers beneath the switch. The results are obtained using three different dielectrics including Silicon nitride (7.6), Hafnium dioxide (25) and Titanium oxide (50). Testing of proposed switch yields high isolation (- 87.5 dB) and low insertion loss (- 0.1 dB at 50 GHz) which is substantially better than the conventional switches. The operating bandwidth of the proposed switch (DC to 95 GHz) makes it suitable for wide band microwave applications.