• Title/Summary/Keyword: Electrical Contact

Search Result 2,093, Processing Time 0.025 seconds

Efficiency Improvement of Polycrystalline Silicon Solar Cells using a Grain boundary treatment (결정입계 처리에 따른 다결정 실리콘 태양전지의 효율 향상)

  • 김상수;김재문;임동건;김광호;원충연;이준신
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1034-1040
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. Grain boundaries acted as potential barriers as well as recombination centers for the photo-generated carriers. To reduce these effects of the grain boundaries we investigated various influencing factors such as emitter thickness thermal treatment preferential chemical etching of grain boundaries grid design contact metal and top metallization along boundaries. Pretreatment in $N_2$atmosphere and gettering by POCl$_3$and Al were performed to obtain multicrystalline silicon of the reduced defect density. Structural electrical and optical properties of slar cells were characterized before and after each fabrication process. Improved conversion efficiencies of solar cell were obtained by a combination of pretreatment above 90$0^{\circ}C$ emitter layer of 0.43${\mu}{\textrm}{m}$ Al diffusion in to grain boundaries on rear side fine grid finger top Yb metal and buried contact metallization along grain boundaries.

  • PDF

Electrical Impedance Change due to Contamination at the Contact Interface of Connectors for Automobile Crank Shaft Position Sensor

  • Kim, Young-Tae;Sung, In-Ha;Kim, Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.46-52
    • /
    • 2004
  • Numerous connectors are used in automobiles for transmission of electrical signals across various electro-mechanical components. The connectors must operate with high reliability in order to minimize failures due to signal degradation. In this work, the effects of contamination at the contact interface of connectors used fur automobile crankshaft position sensor on the impedance change were investigated. An experimental set-up was built to simulate the electrical signal transmitted from the sensor to the engine control unit through a connector. Output from the connector was investigated using connectors contaminated with engine block residues and water droplets. It was found that slight contamination of the connectors could lead to significant signal degradation which can lead to engine failure. Also, the effect of water in the connector altered the signal severely. However, the signal gradually regained the original state as the water evaporated from the interface.

A Single-Pole, Eight-Throw, Radio-Frequency, MicroElectroMechanical Systems Switch for Multi-Band / Multi-Mode Front-End Module

  • Kang, Sung-Chan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.77-81
    • /
    • 2011
  • This paper presents a single-pole eight-throw(SP8T) switch based on proposed a radio-frequency(RF) microelectromechanical systems (MEMS) switches. The proposed switch was driven by a double stop(DS) comb drive, with a lateral resistive contact. Additionally, the proposed switch was designed to have tapered signal line and bi-directionally actuated. A forward actuation connects between signal lines and contact part, and the output becomes on-state. A reverse actuation connects between ground lines and contact part, and the output becomes off-state. The SP8T switch of 3-stage tree topology was developed based on an arrangement of the proposed RF MEMS switches. The developed SP8T switch had an actuation voltage of 12 V, an insertion loss of 1.3 dB, a return loss of 15.1 dB, and an isolation of 31.4 dB at 6 GHz.

A Study on Fault Prediction Algorithm and Failure Instance Analysis of Electric Power Relay (전력릴레이 고장사고 사례분석 및 고장예측 알고리즘 연구)

  • Kim, Yong-Kyu;Kwak, Dong-Kurl;Lee, Seung-Chul
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.15-16
    • /
    • 2015
  • According to 2014 fire statistical yearbook in the National Fire Data System, a main cause of fire is electrical fire except carelessness fire. Joint/contact badness is the one of the main cause of electrical fire. Furthermore, power relays which are used in electric panel board, motor control center and automation controller, are main element of automation system in the industry field. Overload, voltage unbalance and open-phase due to joint/contact badness of terminal make electric accidents or electrical fires. In order to prevent joint/contact badness of terminal, this paper proposes a sensing circuit of chattering, tracking, arc current, voltage unbalance and open-phase etc. Some experimental tests of the proposed apparatus confirm practicality and validity of the theoretical results.

  • PDF

Doping-level dependent dry-etch damage of in n-type GaN (n형 GaN의 doping 농도에 따르는 건식 식각 손상)

  • Lee, Ji-Myon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.417-420
    • /
    • 2004
  • The electrical effects of dry-etch on n-type GaN by an inductively coupled $Cl_2/CH_4/H_2/Ar$ plasma were investigated as a function of ion energy, by means of ohmic and Schottky metallization method. The specific contact resistivity(${\rho}_c$) of ohmic contact was decreased, while the leakage current in Schottky diode was increased with increasing ion energy due to the preferential sputtering of nitrogen. At a higher rf power, an additional effect of damage was found on the etched sample, which was sensitive to the dopant concentration in terms of the ${\rho}_c$ of ohmic contact. This was attributed to the effects such as the formation of deep acceptor as well as the electron-enriched surface layer within the depletion layer. Furthermore, thermal annealing process enhanced the ohmic and Schottky property of heavily damaged surface.

  • PDF

Analysis of Magnetic Arc Reduction of Relay Contacts (릴레이 접점의 자기적 아크 저감 분석)

  • Choi, Sun-Ho;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.234-240
    • /
    • 2019
  • In this work, the magnetic arc reduction phenomena encountered in AC relay contacts were analyzed. To this end, arc duration, instantaneous voltage, and current changes due to changes in the magnetic field were observed. The arc generated at the contact point was affected by the magnitude of the applied magnetic field; the voltage and current waveforms rapidly intersected, resulting in a decrease in arc duration and arc energy. Furthermore, the orientation of the N pole of the magnetic field was found to play a role in the effectiveness of potential arc prevention.

Study on the Electrical Characteristics of SnO2 on p-Type and n-Type Si Substrates (기판의 종류에 따른 SnO2 박막의 전기적인 특성 연구)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.9-14
    • /
    • 2017
  • $ISnO_2$ thin films were prepared on p-type and n-type Si substrates to research the interface characteristics between $SnO_2$ and substrate. After the annealing processes, the amorphous structure was formed at the interface to make a Schottky contact. The O 1s spectra showed the bond of 530.4 eV as an amorphous structure, and the Schottky contact. The analysis by the deconvoluted spectra was observed the drastic variation of oxygen vacancies at the amorphous structure because of the depletion layer is directly related to the oxygen vacancy. $SnO_2$ thin film changed the electrical properties depending on the characteristics of substrates. It was confirmed that it is useful to observe the Schottky contact's properties by complementary using the XPS analysis and I-V measurement.

  • PDF

A Study on the Ohmic Contacts and Etching Processes for the Fabrication of GaSb-based p-channel HEMT on Si Substrate (Si 기판 GaSb 기반 p-채널 HEMT 제작을 위한 오믹 접촉 및 식각 공정에 관한 연구)

  • Yoon, Dae-Keun;Yun, Jong-Won;Ko, Kwang-Man;Oh, Jae-Eung;Rieh, Jae-Sung
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.23-27
    • /
    • 2009
  • Ohmic contact formation and etching processes for the fabrication of MBE (molecular beam epitaxy) grown GaSb-based p-channel HEMT devices on Si substrate have been studied. Firstly, mesa etching process was established for device isolation, based on both HF-based wet etching and ICP-based dry etching. Ohmic contact process for the source and drain formation was also studied based on Ge/Au/Ni/Au metal stack, which resulted in a contact resistance as low as $0.683\;{\Omega}mm$ with RTA at $320^{\circ}C$ for 60s. Finally, for gate formation of HEMT device, gate recess process was studied based on AZ300 developer and citric acid-based wet etching, in which the latter turned out to have high etching selectivity between GaSb and AlGaSb layers that were used as the cap and the barrier of the device, respectively.

  • PDF

The Operational Characteristics of High-speed Interrupter by Fault Types (고장 유형별 고속 인터럽터의 동작 특성)

  • Jeong, In-Sung;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.278-283
    • /
    • 2013
  • With the increasing power demands, size of the fault current in electrical grids is steadily increasing, and it exceeds the breaking capacity of circuit breakers. To effectively cope with these problems, a high-speed interrupter was suggested. The high-speed interrupter provides fault current with a bypass to a fault current limiter in case of accidents and consequently, fault current can be restricted. In this study, behavioral characteristics of high-speed interrupter were analyzed by accident types occurred in a distribution system. When accidents occurred, a and b contact of the high-speed interrupter were turned-off and then, turned-on. Accordingly, fault current flowed to the circuit connected to a current limiting element, and the fault current limiter restricted fault current to within a half-cycle. Nevertheless, the behavior of the high-speed interrupter was slowed down by a switching surge. As a result, fault current was confirmed to be restricted not to within the anticipated half-cycle, but to after a half-cycle. Moreover, the behavioral characteristics of the high-speed interrupter changed not only by accident types, but by behaviors of R, S, and T phases. This was due to the errors in stroke lengths of the high-speed interrupters, which resulted in a slight time discrepancy among three interrupters. In addition, the switching behaviors of the b and a contact were confirmed not to have coincided due to the switching surge; b contact behaved first and a contact followed. because of this, accuracy of stroke length and switching surges through the solenoid suction increases may be necessary to resolve.

The Influence of Rapid Thermal Annealing Processed Metal-Semiconductor Contact on Plasmonic Waveguide Under Electrical Pumping

  • Lu, Yang;Zhang, Hui;Mei, Ting
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • The influence of Au/Ni-based contact formed on a lightly-doped (7.3×1017cm−3, Zn-doped) InGaAsP layer for electrical compensation of surface plasmon polariton (SPP) propagation under various rapid thermal annealing (RTA) conditions has been studied. The active control of SPP propagation is realized by electrically pumping the InGaAsP multiple quantum wells (MQWs) beneath the metal planar waveguide. The metal planar film acts as the electric contact layer and SPP waveguide, simultaneously. The RTA process can lower the metal-semiconductor electric contact resistance. Nevertheless, it inevitably increases the contact interface morphological roughness, which is detrimental to SPP propagation. Based on this dilemma, in this work we focus on studying the influence of RTA conditions on electrical control of SPPs. The experimental results indicate that there is obvious degradation of electrical pumping compensation for SPP propagation loss in the devices annealed at 400℃ compared to those with no annealing treatment. With increasing annealing duration time, more significant degradation of the active performance is observed even under sufficient current injection. When the annealing temperature is set at 400℃ and the duration time approaches 60s, the SPP propagation is nearly no longer supported as the waveguide surface morphology is severely changed. It seems that eutectic mixture stemming from the RTA process significantly increases the metal film roughness and interferes with the SPP signal propagation.