• 제목/요약/키워드: Electrical Contact

Search Result 2,095, Processing Time 0.062 seconds

CO Sensing Properties in Layer structure of SnO2-ZnO System prepared by Thick film Process (SnO2-ZnO계 후막센서 구조에 따른 CO 감지 특성)

  • Park, Bo-Seok;Hong, Kwang-Joon;Kim, Ho-Gi;Park, Jin-Seoung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • The sensing properties of carbon monooxide were investigated as a function of mixing ratio and the lamination structure of 3mol% ZnO-doped $SnO_2$ and 3mol% $SnO_2$-doped ZnO. The lamination structures were fabricared monolayer, double layer, and hetero layer of $SnO_2$, Zno, and theirs mixture composition using thick film process. There was no second phase by the reaction of $SnO_2$ and ZnO. The conductance was decreased by the addition of ZnO in $SnO_2$, but it was increased with the addition of $SnO_2$ in ZnO. The conductance was increased with temperature and the inlet of CO. There was no improvement of sensitivity in the structure of mono- and double-layer. The hetero-layer structure, however, of $SnO_2$ 3ZnO-ZnO $3SnO_2$ showed the higher resistivity and the highest sensitivity. Ohmic characteristics was confirmed by the linear properties for I-V measurements.

A Study on the Errors for the Improved Version of the Virtual Transmission-Line Model (개선된 가상의 전송선로 모델의 오차 연구)

  • 조유선;김세윤;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.971-981
    • /
    • 2002
  • An open-ended coaxial probe method has been considered as one of effective tools for measuring electrical properties of its contacted material without shaping and fitting. The measured reflection coefficient at the probe's end is able to convert into the corresponding complex permittivity by employing the improved version of virtual transmission-line model Presented by our lab already. But the error of complex permittivity converted by equivalent model increases as the operating frequency ascends high. The errors of complex permittivity in the open-ended coaxial probe can be yielded compositively by the imperfect contact or probe, manufacture error of probe and complex permittivity error of reference material etc. Therefore it is necessary to limit the problem to identify the error causes in high frequency. In this paper, the errors which are resulted from the measurement of reflection coefficient are removed by using the FDTD(Finite-Difference Time-Domain) method, the error causes are limited the conversion model problem. And the error study of the improved conversion model is performed from several viewpoints. At first, the local minimum of parameter to be calculated by the iteration method in the conversion model is checked. At second, the modeling of the equivalent model is checked in the frequency range. From this study, we know the valid range of the improved conversion model.

$1{times}8$ Array of GaAs/AlGaAs quantum well infrared photodetector with 7.8$\mu\textrm{m}$ peak response ($1{times}8$ 배열, 7.8 $\mu\textrm{m}$ 최대반응 GaAs/AlGaAs 양자우물 적외선 검출기)

  • 박은영;최정우;노삼규;최우석;박승한;조태희;홍성철;오병성;이승주
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.428-432
    • /
    • 1998
  • We fabricated 1$\times$8 array of GaAs/AlGaAs quantum well infrared photodetectors for the long wavelength infrared detection which is based on the bound-continuum intersubband transition, and characterized its electrical and optical properties. The device was grown on SI-GaAs(100) by the molecular beam epitaxy and consisted of 25 period of 40 ${\AA} $ GaAs well and 500 ${\AA} $ $Al_{0.28} Ga_{0.72}$ As barrier. To reduce the possibility of interface states only the center 20 ${\AA} $ of the well was doped with Si ($N_D=2{\times}10^{18} cm^{-3}$). We etched the sample to make square mesas of 200$\times$200 $\mu\textrm{m}^2$ and made an ohmic contact on each pixel with Au/Ge. Current-voltage characteristics and photoresponse spectrum of each detector reveal that the array was highly uniform and stable. The spectral responsivity and the detectivity $D^*$ were measured to be 180,260 V/W and $4.9{\times}10^9cm\sqrt{Hz}/W$ respectively at the peak wavelength of $\lambda$ =7.8 $\mu\textrm{m}$ and at T=10 K.

  • PDF

Analysis of the Risk of Heat Generation due to Bolt Loosening in Terminal Block Connector Parts (볼트풀림에 의한 터미널 블록의 접속부 발열 위험성 분석)

  • Yeon, Yeong-Mo;Kim, Seung-Hee
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • In this study, the risk of heat generation due to normal and overload currents that vary with the abnormal loosening angle of wire-connecting bolts were identified. The risks were analyzed based on the thermal characteristics to minimize the carbonization accidents of terminal blocks inside distribution panels typically used in industrial sites. We applied a method for measuring the heating temperature and temperature variations in the terminal blocks in real-time by installing a resistance temperature detector sensor board in the terminal block. The experimental results showed that the terminal block model with a low-rated current exhibited a higher heating temperature, thus, confirming the need to select the terminal block capacity based on load currents. Additionally, the higher the rated current of the terminal block with a high-rated current and the higher the degree of loosening, the faster the carbonization point. Such heating temperature monitoring enabled real-time thermal temperature measurement and a step-by-step risk level setting through thermal analysis. The results of the measurement and analysis of carbonization risks can provide a theoretical basis for further research regarding the risk of fire due to carbonization. Furthermore, the deterioration measurement method using the temperature sensor board developed in this study is widely applicable to prevent fires caused by poor electrical contact as well as risk-level management.

Plasma Surface Modification of Graphene and Combination with Bacteria Cellulose (Graphene의 플라즈마 표면 개질과 박테리아 셀룰로오스와의 결합성 검토)

  • Yim, Eun-Chae;Kim, Seong-Jun;Oh, Il-Kwon;Kee, Chang-Doo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.388-393
    • /
    • 2013
  • The study was focused to evaluate the possibility for combination membrane of bacterial cellulose (BC) and graphene with high electrical properties. BC with natural polymer matrix was known to have strong physical strength. For the combination of graphene with BC, the surface of graphene was modified with oxygen plasma by changing strength and time of radio waves in room temperature. Water contact angle of modified graphene grew smaller from $130^{\circ}$ to $12^{\circ}$. XPS analysis showed that oxygen content after treatment increased from 2.99 to 10.98%. Damage degree of graphene was examined from $I_D/I_G$ ratio of Raman analysis. $I_D/I_G$ ratio of non-treated graphene (NTG) was 0.11, and 0.36 to 0.43 in plasma treated graphene (PTG), increasing structural defects of PTG. XRD analysis of PTG membrane with BC was $2{\theta}$ same to BC only, indicating chemically combined membrane. In FT-IR analysis, 1,000 to 1,300 $cm^{-1}$ (C=O) peak indicating oxygen radicals in PTG membrane had formed was larger than NTG membrane. The results suggest that BC as an alternation of plastic material for graphene combination has a possibility in some degree on the part like transparent conductive films.

A Study on the Safety Grounding for Prevention of Electric Shock Hazard in Construction of Industrial Plant in Maritime Landfill Area (해상 매립 지역 산업 플랜트 건설 시 감전 재해 예방을 위한 안전 접지에 관한 연구)

  • Kim, Hong-Yong;Jang, Ung-Burm
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • In our society, the advanced, advanced, and information industries have continued to grow and now live in the era of the fourth industrial revolution. As the industry develops, the load of the users has also increased so much that it is deepened by the energy shortage phenomenon and the construction of additional energy facilities is required. Therefore, energy plant construction work is being actively carried out in the coastal area. In particular, it is common to build a plant in the ground by filling the coast with soil in other regions, reflecting the fact that Korea is lacking in the country when constructing power plants, gas and petrochemical plants. Current domestic grounding designs are designed or constructed to suit only the use of grounding resistors based on the electrical equipment design technical standards. However, in the case of a plant facility constructed in the untested buried soil, when the lightning current and the abnormal current are inputted, the facility operator or the user due to the elevation of the ground potential is seriously exposed to the risk of electric shock disaster. In this paper, we analyze the ground resistivity of the landfilled soil and use a computer program (CDEGS) based on KS C IEC 61936-1, We analyze the contact voltage and stratification voltage and propose a grounding design optimized for plant installation.

Evaluations of Si based ternary anode materials by using RF/DC magnetron sputtering for lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.302-303
    • /
    • 2010
  • Generally, the high energy lithium ion batteries depend intimately on the high capacity of electrode materials. For anode materials, the capacity of commercial graphite is unlike to increase much further due to its lower theoretical capacity of 372 mAhg-1. To improve upon graphite-based negative electrode materials for Li-ion rechargeable batteries, alternative anode materials with higher capacity are needed. Therefore, some metal anodes with high theoretic capacity, such as Si, Sn, Ge, Al, and Sb have been studied extensively. This work focuses on ternary Si-M1-M2 composite system, where M1 is Ge that alloys with Li, which has good cyclability and high specific capacity and M2 is Mo that does not alloy with Li. The Si shows the highest gravimetric capacity (up to 4000mAhg-1 for Li21Si5). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. Si thin film is more resistant to fracture than bulk Si because the film is firmly attached to the substrate. Thus, Si film could achieve good cycleability as well as high capacity. To improve the cycle performance of Si, Suzuki et al. prepared two components active (Si)-active(Sn, like Ge) elements film by vacuum deposition, where Sn particles dispersed homogeneously in the Si matrix. This film showed excellent rate capability than pure Si thin film. In this work, second element, Ge shows also high capacity (about 2500mAhg-1 for Li21Ge5) and has good cyclability although it undergoes a large volume change likewise Si. But only Ge does not use the anode due to its costs. Therefore, the electrode should be consisted of moderately Ge contents. Third element, Mo is an element that does not alloys with Li such as Co, Cr, Fe, Mn, Ni, V, Zr. In our previous research work, we have fabricated Si-Mo (active-inactive elements) composite negative electrodes by using RF/DC magnetron sputtering method. The electrodes showed excellent cycle characteristics. The Mo-silicide (inert matrix) dispersed homogeneously in the Si matrix and prevents the active material from aggregating. However, the thicker film than $3\;{\mu}m$ with high Mo contents showed poor cycling performance, which was attributed to the internal stress related to thickness. In order to deal with the large volume expansion of Si anode, great efforts were paid on material design. One of the effective ways is to find suitably three-elements (Si-Ge-Mo) contents. In this study, the Si based composites of 45~65 Si at.% and 23~43 Ge at.%, and 12~32 Mo at.% are evaluated the electrochemical characteristics and cycle performances as an anode. Results from six different compositions of Si-Ge-Mo are presented compared to only the Si and Ge negative electrodes.

  • PDF

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis (양이온 교환막 수전해용 산화전극 확산층의 표면 특성 제어를 통한 전기화학적 성능 개선 연구)

  • Lee, Han Eol;Linh, Doan Tuan;Lee, Woo-kum;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.332-339
    • /
    • 2021
  • Recently, due to concerns about the depletion of fossil fuels and the emission of greenhouse gases, the importance of hydrogen energy technology, which is a clean energy source that does not emit greenhouse gases, is being emphasized. Water electrolysis technology is a green hydrogen technology that obtains hydrogen by electrolyzing water and is attracting attention as one of the ultimate clean future energy resources. In this study, the surface properties of the porous transport layer (PTL), one of the cell components of the proton exchange membrane water electrolysis (PEMWE), were controlled using a sandpaper to reduce overvoltage and increase performance and stability. The surfaces of PTL were sanded using sandpapers of 400, 180, and 100 grit, and then all samples were finally treated with the sandpaper of 1000 grit. The prepared PTL was analyzed for the degree of hydrophilicity by measuring the water contact angle, and the surface shape was observed through SEM analysis. In order to analyze the electrochemical characteristics, I-V performance curves and impedance measurements were conducted.

A Case Study of Risk Assessments and Safety Measures in a PCB Manufacturing Process (인쇄회로기판 제조 공정에서 위험성평가와 안전조치 적용 사례 연구)

  • Lee, Young Man;Lee, Inseok
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.120-128
    • /
    • 2022
  • Printed circuit boards (PCBs) are a basic component in the electronics industry and are widely used in nearly all electronic products, such as mobile phones, tablet computers, and digital cameras, as well as in electric equipment. PCB manufacturing involves the use of many chemicals and chemical processes and therefore has more risks than other manufacturing sectors. This study aims to identify the causes of possible accidents during PCB manufacturing through risk assessment, develop and implement safety measures, and evaluate the effectiveness of these measures. Note that the safety measures developed to mitigate the risks of a certain process were also implemented for other similar processes. The risk assessments conducted over seven years, from 2015 to 2021, at a PCB manufacturing company identified 361 hazardous processes. Between 2016 and 2019, 41-56 hazardous processes were identified per year; such processes decreased to fewer than 20 per year after 2020. Application of the risk assessment results to the improvement of the hazardous processes with the similar characteristics seems to be effective in decreasing the risks. Equipment-related factors such as lack of appropriate maintenance, low work standards, and defective protection devices were responsible for 59.8% of all possible accidents. Because PCB manufacturing involves many chemicals, skin contact with hazardous substances, electric shock, fire, and explosion were the most common types of possible accidents (81.7%). In total, 505 safety measures were implemented, including 157 related to purchase and improvement of equipment and devices for safety (31.1%), 147 related to the installation/modification of fire prevention facilities (29.1%), and 69 related to the use of standard electrical appliances (13.7%). Risk assessment conducted after implementing the safety measures showed that these measures significantly decreased risk; 247 processes (68.4%) had a risk level of 3, corresponding to "very low," and 114 processes (31.6%) showed a risk level of 4, corresponding to "low." In particular, risk assessment of 104 processes with risk scores of 12 and 10 other processes with risk score of 16 showed that the risk decreased to 4 after implementing the safety measures. Thus, implementing these measures in similar manufacturing sectors that involve chemical processes can mitigate risk.