• Title/Summary/Keyword: Electrical Contact

Search Result 2,093, Processing Time 0.027 seconds

Fabrication of Mo Thin Film by Hydrogen Reduction of MoO3 Powder for Back Contact Electrode of CIGS (MoO3 분말의 수소환원을 통한 CIGS계 후면 전극용 Mo 박막제조)

  • Jo, Tae Sun;Kim, Se Hoon;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • In order to obtain a suitable back contacting electrode for $Cu(InGa)Se_2$-based photovoltaic devices, a molybdenum thin film was deposited using a chemical vapor transport (CVT) during the hydrogen reduction of $MoO_3$ powder. A $MoO_2$ thin film was successfully deposited on substrates by using the CVT of volatile $MoO_3(OH)_2$ at $550^{\circ}C$ for 60 min in a $H_2$ atmosphere. The Mo thin film was obtained by reduction of $MoO_2$ at $650^{\circ}C$ in a $H_2$ atmosphere. The Mo thin film on the substrate presented a low sheet resistance of approximately $1{\Omega}/sq$.

Electro-Osmotic Dewatering under Electro-Osmotic Pulse Technology

  • Kim, Jitae;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.423-433
    • /
    • 2020
  • Direct current (DC) electric fields have been used for electro-osmotic dewatering. Under DC conditions, however, the electrical contact resistance between the electrode and the dewatering material increases considerably during the process of dewatering. Such a circumstance hinders the continuation of effective electro-osmotic dewatering. To reduce this hindrance, an applied pulse electric field with periodic reversals of the electrode polarity should improve electro-osmotic dewatering. In this study, electro-osmotic dewatering under pulse conditions was experimentally investigated for electrode polarity reversals. During the dewatering process, the pulse electric field was able to reduce the hindrance caused by the DC, resulting in an increased final dewatered amount relative to that under a DC electric field. For a constant applied voltage, the reversed polarity condition, under which the electric current passing through the material was almost unchanged with time, yielded the maximum final dewatered amount. This technique can be used to enhance drainage from a water storage facility during a period of extreme drought and the seawater desalination plants using reverse osmosis in drought stricken coastal regions.

Development of Smart ICT-Type Electronic External Short Circuit Tester for Secondary Batteries for Electric Vehicles (전기자동차용 2차전지를 위한 스마트 ICT형 전자식 외부 단락시험기 개발)

  • Jung, Tae-Uk;Shin, Byung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • Recently, the use of large-capacity secondary batteries for electric vehicles is rapidly increasing, and accordingly, the demand for technologies and equipment for battery reliability evaluation is increasing significantly. The existing short circuit test equipment for evaluating the stability of the existing secondary battery consists of relays, MCs, and switches, so when a large current is energized during a short circuit, contact fusion failures occur frequently, resulting in high equipment maintenance and repair costs. There was a disadvantage that repeated testing was impossible. In this paper, we developed an electronic short circuit test device that realizes stable switching operation when a large-capacity power semiconductor switch is energized with a large current, and applied smart ICT technology to this electronic short circuit stability test system to achieve high speed and high precision through communication with the master. It is expected that the inspection history management system based on data measurement, database format and user interface will be utilized as essential inspection process equipment.

Electrode Design for Electrode Formation and PV Module Integration Development (전극형성과 태양전지 모듈 일체화 기술 개발에 적용되는 태양전지 전극 설계 기술)

  • Park, Jinjoo;Jeon, Youngwoo;Jang, Minkyu;Kim, Minje;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.123-127
    • /
    • 2021
  • This study was on electrode design for the realization of a solar cell that combines electrode formation and module integration process to overcome printing limitations. We used the passivated emitter rear contact (PERC) solar cell. Wafer size was 156.75 mm ×156.75 mm. The fabricated cell results showed that the open-circuit voltage of 649 mV, short-circuit current density of 36.15 mA/cm2, fill factor of 68.5%, and efficiency of 16.06% with electrode conditions the 24BBs with the width 190 ㎛ and 90FBs with the width 45 ㎛. For improving efficiency, the characteristics of the solar cell were checked according to the change in the number of BBs and FBs and the change in line fine width. It is confirmed that the efficiency of the solar cell will be improved by increasing the number of FBs from 90 to 120, and increasing the line width of the FBs by about 10 ㎛ compared to the manufacturing solar cells.

Multi-Label Image Classification on Long-tailed Optical Coherence Tomography Dataset (긴꼬리 분포의 광간섭 단층촬영 데이터세트에 대한 다중 레이블 이미지 분류)

  • Bui, Phuoc-Nguyen;Jung, Kyunghee;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.541-543
    • /
    • 2022
  • In recent years, retinal disorders have become a serious health concern. Retinal disorders develop slowly and without obvious signs. To avoid vision deterioration, early detection and treatment are critical. Optical coherence tomography (OCT) is a non-invasive and non-contact medical imaging technique used to acquire informative and high-resolution image of retinal area and underlying layers. Disease signs are difficult to detect because OCT images have many areas which are not related to any disease. In this paper, we present a deep learning-based method to perform multi-label classification on a long-tailed OCT dataset. Our method first extracts the region of interest and then performs the classification task. We achieve 98% accuracy, 92% sensitivity, and 99% specificity on our private OCT dataset. Using the heatmap generated from trained convolutional neural network, our method is more robust and explainable than previous approaches because it focuses on areas that contain disease signs.

Prediction of Closed Quotient During Vocal Phonation using GRU-type Neural Network with Audio Signals

  • Hyeonbin Han;Keun Young Lee;Seong-Yoon Shin;Yoseup Kim;Gwanghyun Jo;Jihoon Park;Young-Min Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2024
  • Closed quotient (CQ) represents the time ratio for which the vocal folds remain in contact during voice production. Because analyzing CQ values serves as an important reference point in vocal training for professional singers, these values have been measured mechanically or electrically by either inverse filtering of airflows captured by a circumferentially vented mask or post-processing of electroglottography waveforms. In this study, we introduced a novel algorithm to predict the CQ values only from audio signals. This has eliminated the need for mechanical or electrical measurement techniques. Our algorithm is based on a gated recurrent unit (GRU)-type neural network. To enhance the efficiency, we pre-processed an audio signal using the pitch feature extraction algorithm. Then, GRU-type neural networks were employed to extract the features. This was followed by a dense layer for the final prediction. The Results section reports the mean square error between the predicted and real CQ. It shows the capability of the proposed algorithm to predict CQ values.

Applications of Nanomanipulator in Nanowires (나노메니퓰레이터를 이용한 나노선의 특성평가)

  • Yoon, Sang-Won;Seo, Jong-Hyun;Ahn, Jae-Pyoung;Seong, Tae-Yeon;Lee, Kon-Bae
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.138-145
    • /
    • 2009
  • The combination of focused ion beam (FIB) and 4 point probe nanomanipulator could make various nano manufacturing and electrical measurements possible. In this study, we manufactured individual ZnO nanowire devices and measured those electrical properties. In addition, tensile experiments of metallic Au and Pd nanowires was performed by the same directional alignment of two nanomanipulators and a nanowire. It was confirmed from I-V curves that Ohmic contact is formed between electrodes and nanomanipulators, which is able to directly measure the electrical properties of a nanowire itself. In the mechanical tensile test, Au and Pd nanowires showed a totally different fracture behavior except the realignment from <110> to <002>. The deformation until the fracture was governed by twin for Au and by slip for Pd nanowires, respectively. The crystallographic relationship and fracture mechanism was discussed by TEM observations.

Noise Analysis and Measurement for a CW Bio-Radar System for Non-Contact Measurement of Heart and Respiration Rate (호흡 및 심박수 측정을 위한 비접촉 방식의 CW 바이오 레이더 시스템의 잡음 분석 및 측정)

  • Jang, Byung-Jun;Yook, Jong-Gwan;Na, Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1010-1019
    • /
    • 2008
  • In this paper, we present a noise analysis and measurement results of a bio-radar system that can detect human heartbeat and respiration signals. The noise analysis including various phase noise effects is very important in designing the bio-radar system, since the frequency difference between the received signal and local oscillator is very small and the received power is very low. All of the noise components in a bio-radar system are considered from the point of view of SNR. From this analysis, it can be concluded that the phase noise due to antenna leakage is a dominant factor and is a function of range correlation. Therefore, the phase noise component with range correlation effect, which is the most important noise contribution, is measured using the measurement setup and compared with the calculated results. From the measurement results, our measurement setup can measure a closed-in phase noise of a free-running oscillator. Based on these results, it is possible to design a 2.4 GHz bio-radar system quantitatively which has a detection range of 50 cm and low power of 1 mW without additional PLL circuits.

Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission (전기적-미세역학시험법과 음향방출을 이용한 단일 탄소섬유/탄소나노튜브-에폭시 나노복합재료의 자체-감지능)

  • Park, Joung-Man;Jang, Jung-Hoon;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Jong-Kyu;Lee, Woo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.411-422
    • /
    • 2010
  • Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT -epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to micro failure at the interfaces by added CNTs.

The field emission characteristics of an oxidized porous polysilicon field emitter using Pt/Ti emitter-electrode (Pt/Ti 전극을 사용한 산하된 다공질 폴리 실리콘 전계방출소자의 특성)

  • Han Sang-Kug;Park Keun-Yong;Choi Sie-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.23-30
    • /
    • 2005
  • In this paper, OPPS(oxidized porous poly-silicon) field emitters were fabricated by using various emitter-electrode metal and these electron emission characteristics were investigated for different thermal annealing effects. The addressed OPPS field emitter with Pt/Ti emitter electrode annealed at $300^{\circ}C$-1hr showed the efficiency of $2.98\%$ at $V_{ps}$=12 V and one annealed at $350^{\circ}C$-1hr showed the highest efficiency of $3.37\%$at $V_{ps}$=16V. They are resulted from the improvement of interfacial contact characteristics of thin emitter metal to an oxidized porous poly-silicon and the decrease of electrical resistance of emitter metal. The brightness of the OPPS field emitter increases linearly in $V_{ps}$ and after oxidation process for $900^{\circ}C$-50min, the brightness of the OPPS field emitter with the as-deposited Pt/Ti emitter electrode was 3600 cd/$m^2$ at the $V_{ps}$=15 V, 6260 cd/$m^2$ at the $V_{ps}$=20 V. Thermal treatment improved the adhesion between the Ti buffer layer and the oxidized porous poly-silicon and also played an important role in the uniform distribution of electric field to the emitter electrode.