• Title/Summary/Keyword: Electrical Absorber

Search Result 143, Processing Time 0.023 seconds

Cu2ZnSn(S,Se)4 Thin Film Solar Cells Fabricated by Sulfurization of Stacked Precursors Prepared Using Sputtering Process

  • Gang, Myeng Gil;Shin, Seung Wook;Lee, Jeong Yong;Kim, Jin Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.97-97
    • /
    • 2013
  • Recently, Cu2ZnSn(S,Se)4 (CZTSS), which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTSS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of 104 cm-1, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTSS based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. I will briefly overview the recent technological development of CZTSS thin film solar cells and then introduce our research results mainly related to sputter based process. CZTSS thin film solar cells are prepared by sulfurization of stacked both metallic and sulfide precursors. Sulfurization process was performed in both furnace annealing system and rapid thermal processing system using S powder as well as 5% diluted H2S gas source at various annealing temperatures ranging from $520^{\circ}C$ to $580^{\circ}C$. Structural, optical, microstructural, and electrical properties of absorber layers were characterized using XRD, SEM, TEM, UV-Vis spectroscopy, Hall-measurement, TRPL, etc. The effects of processing parameters, such as composition ratio, sulfurization pressure, and sulfurization temperature on the properties of CZTSS absorber layers will be discussed in detail. CZTSS thin film solar cell fabricated using metallic precursors shows maximum cell efficiency of 6.9% with Jsc of 25.2 mA/cm2, Voc of 469 mV, and fill factor of 59.1% and CZTS thin film solar cell using sulfide precursors shows that of 4.5% with Jsc of 19.8 mA/cm2, Voc of 492 mV, and fill factor of 46.2%. In addition, other research activities in our lab related to the formation of CZTS absorber layers using solution based processes such as electro-deposition, chemical solution deposition, nano-particle formation will be introduced briefly.

  • PDF

Influence of Selenization Pressure on Properties of CIGS Absorber Layer Prepared by RF Sputtering

  • Jung, Sung Hee;Choi, Ji Hyun;Chung, Chee Won
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.87-92
    • /
    • 2016
  • The effects of selenization pressure on the structural, optical and electrical properties of the CIGS thin films prepared by RF magnetron sputtering using a single quaternary target were investigated. At selenization pressures lower than atmospheric pressure, CIGS thin films formed non-stoichiometric compounds due to deficiencies of Se vapor. In contrast, when selenization process was conducted at above atmospheric pressure, the residence time of Se vapor inside the tube increased so that the Se element could be incorporated within vacant sites of the CIGS structure, resulting in the formation of stoichiometric CIGS thin films. High quality CIGS thin films could be obtained when the selenization process was performed at pressures greater than atmospheric and $550^{\circ}C$.

Dynamics Modeling of Beams with Piezoelectric Resonant Shunting (압전 공진 션트회로가 부착된 빔의 동적 모델링)

  • Park Cheol Hyu;Park Hyeon Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.328.2-328
    • /
    • 2002
  • General modeling of a resonant shunting damper has been made Iron piezoelectric sensor/actuator equation. It is found that an additional damping, which is augmented to a system, is generated by the shunt damping effect The transfer function of the tuned electrical absorber is derived for both series and parallel shunt circuit. The governing equations and associated boundary conditions are derived using Hamilton's Principle. The shunt voltage equation is also derived from the charge generated in PZT due to beam vibration. The frequency response function of the obtained mathematical model is compared with that of the tuned eledtrical absorber and experimental work. The vibration amplitude is reduced about 15 dB at targeted second mode frequency.

  • PDF

Semi-Actively Controlled Impact System Design (충격장치의 반 능동 제어시스템 설계)

  • Kim, Dong-Hwan;Choi, Moon-Chul;Lee, Kyo-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.46-56
    • /
    • 1999
  • A semi-actively controlled impact system which adjusts an impulse exerted by the external impact is studies. The main control variables are internal pressure difference inside the cylinder and the shock absorber displacement while it travels. Compared to a conventional one so called a passive system with a variable orifice inside the cylinder, a semi-actively controlled system utilizes an external orifice controlled by a highly fast responding electrical proportional valve. This device overcomes the temperature and viscosity change due to continuous operating and keeps the desired pressure difference and displacement in every operation. In this article a new prototype impact system is designed and manufactured based on a semi-actively control system. Through computer simulations and experiments, we verify the possibility of controlling the shock absorber pressure and displacement. After investigating the control performance a modified semi-actively controlled system with better control performance is also proposed.

  • PDF

A Square Coaxial Transmission Line with a Thin-Wire Inner Conductor to Measure the Absorbing Performance of Electromagnetic Absorbers

  • Kang, Tae-Weon;John Paul;John Paul
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • A low-frequency coaxial reflectometer(LCR) with a thin-wire inner conductor is designed and constructed to measure nondestructively the absorbing performance of electromagnetic absorbers in the frequency range of 10 MHz to 200 MHz. The LCR consists of a square coaxial transmission line and a network analyzer with a time-domain measurement capability. Inherent characteristics of a square coaxial line with a thin-wire inner conductor which deteriorate the impedance matching of the input port of the LCR are addressed. And the characteristics are improved by employing a multiwire inner conductor. Measured and calculated reflection losses of a flat ferrite tile absorber are presented.

The Selection of Appropriate Surge Absorber Value Reducing the Switching Surge of VCB for High Voltage Motor and Surge Measurement (고압전동기용 진공차단기의 스위칭 써지를 저감시키는 써지흡수기의 적정치 선정과 써지측정)

  • Kim, Taek-Soo;Lee, Sung-Chul;Lee, Eun-Woong;Kim, Jong-Kyeom
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.100-102
    • /
    • 1994
  • VCB, with its big arc extinction in very short switching time, produces the high switching surge voltage which may cause the breakdown of motor insulation or acceleration of insulation deterionation. To protect motor winding insulation, we developed the computer algorithm for simulating the surge occurred in VCB by EMTP. And we established the effect of the C-R surge absorber by the surge measurement in the motor-VCB circuit.

  • PDF

Microwave Absorption Properties of Ferrite/Rubber Composite Microwave Absorber mixed Ni-Zn ferrite and $Ni_2Y$ ferrite (Ni-Zn 페라이트와 $Ni_2Y$ 페라이트를 혼합한 페라이트/고무복합형 전파흡수체의 전파흡수특성)

  • Kim, H.G.;Kim, S.R.;Lee, S.H.;Cho, H.C.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1355-1357
    • /
    • 1997
  • In this study, the ferrite/rubber composite microwave absorbers mixed Ni-Zn ferrite and $Ni_2Y$ ferroxplana were prepared in order to control matching condion. The variation of the material constants($\dot{\varepsilon}$, $\dot{\mu}$) and microwave absorbing characteristics were investigated with various ferrite mixing ratio. The material constants of ferrite/rubber composite microwave absorber could be controlled by variation ferrite mixing radio. The matching frequency and thickness could be controlled with various ferrite mixing ratio.

  • PDF

Current Technologies and Prospects of Electromagnetic Wave Absorbers

  • Kim, Dong Il;Kim, Soo Jeong;Kwak, Hyun Soo;Joo, Yang Ick
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • With the rapidly increasing and widespread use of electronic and controlling equipment, the control of the electromagnetic (EM) wave environment becomes an important social issue. To solve the electromagnetic compatibility (EMC, both electromagnetic interface and electromagnetic susceptibility) problems, in this paper, we introduce the countermeasure techniques focused on EM wave absorbers for EMC problems in our laboratory at the Korea Maritime and Ocean University. The current technologies related to EM wave absorbers to solve EMC problems will first be described. The prospects of and a design for EM wave absorbers including a smart absorber with a heat radiating function will then be suggested.

Compact electromagnetic vibration suppressor and energy harvester; an experimental study

  • Aref Afsharfard;Hooman Zoka;Kyung Chun Kim
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.217-225
    • /
    • 2024
  • In this study, an electromagnetic dynamic vibration suppressor and energy harvester is designed and studied. In this system, a gear mechanism is used to convert the linear motion to continuous rotary motion. Governing equations of motion for the system are derived and validated using the experimental results. Effects of changing the main parameters of the presented system, such as mass ratio, stiffness ratio and gear ratio on the electro-mechanical behavior of system are investigated. Moreover, using so-called Weighted Cost Function, the optimum parameters of the system are obtained. Finally, it is shown that the presented electromagnetic dynamic vibration absorber not only can reduce the undesired vibration of the main system but also it can harvest acceptable electrical energy.